The ALICE Offline
Bible

Version 0.00
(Rev. 22)

The ALICE Offline Bible

1 Table of content

1TABLE OF CONTENT 2
2INTRODUCTION 6
2.1 ABOUT THIS DOCUMENT......vterutteeuteesurtennseesstessseesssesseesaseessseesssessseesssesseessseesnsseesssessseessseenne 6
2.2 ACKNOWLEDGEMENTS....c.uttesuteesureenttesuseeseesastesaseaseesseenseesnssessseesseessseessseesssesnseessseessseesssesnsesnne 6
2.3HISTORY OF MODIFICATIONS. ¢...vteutteuteerueeeseeenseesuseenseesnsesnnseesseessseesseessseessseesseessseenseessseesssesnsesnne 6
3THE ALIROOT PRIMER 7
3.1 ABOUT THIS PRIMER.0eeeuteeeesseeeessseeesssesassseesassssessssesssssssessssssssnssssssssessassssssssseessnssessssesssnseanns 7
3.2 ALIROOT FRAMEWORK ... tveeeutreeesreeessnseeesnseeesssessansaesanssesssssesessseesssessssssessnsssesanssessasssessnnsesnns 8
3.3INSTALLATION AND DEVELOPMENT TOOLS..c.uuttteetteesuseeesnnseesaseeessssessnsssesssssessaseessnsseessnssseessneees 10
3.3. 1PLatforms And COMPILETS..........c.coovueeveiniiiiiiiiieeeetesee ettt st 10
3.3.2Es55ential CVS IHfOTMIAIION.cc.veeeueiiiiiiiiiiieieeete ettt ettt ettt s te e st esaee e s 11
3.3.3MAIN CVS COMMUANAS........ooeeeeeeeesciieeeeiieeeeiieeeeeeeeeeete e e e saaaeesssaeesenssaeesenssaeesssnseeeas 13
3.3 4ENVITONIMENTE VATIADIES.cccueeeeieiieeiiiiieeieeeit ettt st site st e st enaae e s 14
3.4 SOFTWARE PACKAGES. . .uveeueveesseesreessseessseesseessssessssessssesssesssssssssessssessssesssssssssesssseenssessssssssenns 15
BeA L ALIE ..ottt ettt ettt e e et e et et e et ta e e aa e et e e e be e tb e e ate e taeeaaeenareas 15
BeA2ROOT ..ottt ettt ettt ettt ate bbb e bt e st e e et e s be e sabeenaaenaten 15
BB ZGEANT 3.ttt ettt et et e st e et e e e st et et e ent e e st e saeseeneeeneens 17
BeAAGEANT Aottt ettt sttt et e et e st e e e be et e e st e e baeenbeenaten 17
BeASFLUKA. ..ottt ettt ettt sttt ettt e b et e st e bt e s be e sabeeaeenate s 20
BeALOALIROO ..ottt ettt ettt ettt ettt e st e e et e st e e e be et e e ateetaeenbeenntean 21
BeA.7DCDUGZING. ..ottt ettt ettt ettt et sa e b e bbbt te e bbeenate s 21
3o BPFOSIIING.c...ooeeeeeeeeeeee ettt ettt ettt et ettt et e et e et e enbae e nbeeaeennten 22
3.4.9DeteCtion Of TUIL TIMNE @FTOFS......ccccueeeueierueeeiieenieesiesitreecteessseesateesiseenaseessseesseessseensees 23
3.4.10Useful information LSF Gnd CASTOR............ooooueeeeeieeieeciieeieeeeieeeeiveesieeesvee e 25

B S SIMULATION . ..ceutteeuteesiteetteetee s it e et e s bt ettt e bt e s beesaeeesubesateeenbeesabeesabeebtesabbeenseesabaesaseesabeesnseesn 26
3.5 I INITOAUCHION. ...ttt ettt ettt et s e st e s aeebae s satesasaesnseenaseen 26
3.5. 25TMULATION fTAMEWOTK.....cccveeeeeeeeciieeie ettt e tae e et eseae e teeenaee s ssaeenaees 28
3.5.3Configuration: example Of CONFIg.C.......ouuuunnumriviiiiiiieiiieiiiieeiiieeiieencieessieesieessveenanes 32
3.5.4EVENTE GENEFALIOMN......cccvveeeveeeieeeeveeeieeeeseesteesteesteesteesseessseesseessseesssessseesssassesssseesssensses 36
3.5.5PATTICLE TFANSPOTL....ocveeieeieeeie et ettt et e te e e s te e ae s tesstaeessse e nbeassseessnesnseean 47
3.ORECONSTRUCTION. ...ccuuvieetreeesereeeasreesssseeessseeeasseessssesassesssssesesssseessssesessssessssssesssssesssssesessnsees 51
3.6. 1ReCONSITUCTION FFYAMEWOTK.....oc.vvveeieeciiieeiieeiiieciieeeiieeiteeetteeteestaeeaeestaeensaesssaeennees 51
3.6.2EVENt SUMMATY AQTQ......ooecueeeceeeeiiieeeieeeeiieeeieessieeeeieeseseesteessseessseesseessseessesnssessssesnsses 60
BT ANALYSIS. et eutteeeeteeeastreeeeseseeesssseeesseseeaasssesasssesaessseeseassaeesassssaesssseesasssssessssseesansseeeenssseesssssees 61
3.7 A INITOAUCTION. ...ttt et e e te et s e te e s aae e taeeseessbeesaeesaesssnesssaeansaenssens 61
3.7.2Infrastructure tools for distributed ANALYSIS............cccveveueeeceeeciieiieniiencieeseeerieeenees 63

3.7 . 3ANALYSIS LOOLS.....cceeeeeieeiiecieeeeeee ettt e e et e e ete st e e ae e aae e tbeebe e tbeessseessaeensaansses 65
3.7.4Existing analysis examples in ALIROOL...............ccoueecueecieeceeeciieiiesieeeieesie e evee e 69
3.8 ANALYSIS FOUNDATION LLIBRARY......ccuviieiiiiiieiiieeiiiieeitieesiteeeesteeeesiveeessnraeeeseseeesnesaeennsseeesnnnens 73
BuB.LAOND........ooeeieeeeee ettt e et e et e e e be e tbe e rte e taeeaeannten 74
Bu8.2PATTICLE. ..ottt ettt sttt et e et be e tbe e tbaentteetbeentren 74

R T ¥ 0 1 USSP 74

2/199

The ALICE Offline Bible

3.8.4Analysis manager class and DASE CLASS..............cccucovueeciiiiiiniiiiiiiiiieseeeeesee 75
BuB.SRCAACTS.......oceeeeeeeeeeeee ettt ettt e ettt e e e ae e bb e e e e e taeeaeeente s 76
Be8.OAODS DUSFET ..ottt sttt sttt ettt sbe et s 77
BuB.7CULS ettt et e ettt et b ettt e e baaebe e tbeebeetbaessteetaeenbaennten 77
3.8.8OTNET CLASSES.c...ooneeeeeieiiieieeeeeeeee ettt ettt sttt ettt sttt e st enaee et s 78
3.9DATA INPUT, OUTPUT AND EXCHANGE SUBSYSTEM OF ALIROOT.......ucuvvvurriiriererireieveieneeeeseeennerennnnns 78
3.9.1The “WHRite BOATA.........c.c.uuueeeeiiieeeiiieeeiie e eeeee e ette e et e s etee s streeeessaeesenssaesennseeean 80
Be9.2L0AACTS......oooeeieeeeeeeieeie ettt ettt sttt ettt be e s be e et s 81
3.10CALIBRATION AND ALIGNMENTuteeettteeenureeesssseesessseesannseesansseesssseessnsseeessssseessnssesssssssesssnseees 84
3.10.1Calibration frameWork...............ccccccceieeuiiiuieiiiniieeieieeeee ettt 84
3.1 1THE EVENT TAG SYSTEM...iiiitiiiiiieieeiiieeiteesiteeete e sttt esteestteesiteessteessaesssseessseesssesnsnessssessssees 88
3.1 1. 1The ANGLYSIS SCHEME.cceeeeiiieiiieiiieieeieee ettt st s 88
3.11.2The Event Tag SYSIEM.........cc..cccouecuieiiniiiiniieeiieeene ettt e 90
3.11.3The Creation Of the Tag TAG-FilesS..........cccocueecuinuiiniiiiniiiniiesiieenieesieesieesiveenaeees 91
3. 12META-DDATA IN ALICE ... ittt ettt et e e ete e e naae e e eneeas 95

4 T INTRODUCTION. ...ceuttteuteeeureereessseenseeanseesseessseesseesssseessessssesssseessssssssesssessssesnssesssseessessssessssesnsses 99
4. 2PATH NAME SPECIFICATION.....0euveesreessseessseensseensseensseensseensseesssesnssessssesnssessssesnssessssessnsesssssesnsees 99
4. 3FILE NAME SPECIFICATION. .. .vteuuteeuteeeureessresseenseesseessesnssesssesnsesenseesssesnseessessnsesssessssessseensseenns 101
4.4WhicH FFILES WILL BE LINKED TO FROM THE ALICE FILE CATALOGUE?.......cccvvviiivirieeeeeiieenen, 101
4. SIMETA DATAMETADATA. ..ceeuteetteeriteesteeesiteesttessttessteessttessteessstesbeessseessseessseessseessseesseesnseesnns 102
4.5. 1Run meta datameEtAAALA.............ccc.eeecueeseeeciieiiiesieecieeete st e st esieesteessseesaseesaesaaeens 102
4.5.2File meta dQtAMEIAAALA.c.coccuveeeeeeieeieeeeeeiieesereeseeesteeseesseessseessseesseesseeans 103
4.6POPULATION OF THE DATABASE WITH INFORMATION.......veeeuteeureenseennreennseennseenssesnnseensesnssesnnennns 104
4. TDATA SAFETY AND BACKUP PROCEDURES.......veeeuttesteeesreenseesuseesnseessseeenssessnseessseessseesnnsesssseesnns 104
SALIEN REFERENCE 105
5. TWHAT'S THIS SECTION ABOUT 7...veteeuutieeserieeaseresesasseeesssseesassesssssessssssessssssssssssessssssessansseeennnes 105
5.2THE CLIENT INTERFACE APL......oiiiiiiiiiie ettt e e 105
5.3INSTALLATION OF THE CLIENT INTERFACE LIBRARY PACKAGE — GAPL.....uuveveeseereeeenneeeeennnreeeennneeennnns 106
5.3. 1Installation via the ALLEN iNSTALLET...........cc.oeeeeeeeeeieeiiieeeciie e eeeiee e ste e e 106
5.3.2Recompilation with your locally installed cOMPIler..............ccoveevevveenveercieeniienennnns 106
5.3.3Source Installation uSing ALIENBILS...........cocccoeviiiiieieiiieeeestesite ettt 107
5.3.4The directory structure of the client iNterface...............ccouveceivvveeecieiriieeeieseieeeieenns 107
5.4USING THE CLIENT INTERFACE = CONFIGURATION......vteesereeeannreeennsseeessseeeensseeessseesssssesssnssesnnnes 109
5.5USING THE CLIENT INTERFACE = AUTHENTICATION.....0eeuvveeereerreeseeessesesseessssesseessseesnsesenssessnses 109
5.5, 1TOKEN LOCAIION.c..vveeeeeeeiiieeeeieeeeeeeeeeeeeeeetee e aaeessaeeessssaessseaeesseesennsseesnnnnes 109
S5.5.2FGLO-TOKEIS.c...ccceeeeeeeeiieieeeee ettt ettt sttt ettt sbte st e sabe e sbeenbaaesanesaneeeas 109
5.6SESSION TOKEN CREATION. .. .0eetteiurieetteeteesseeseeeteesseesseesssesssesaseessssessasassessssesssssessesensesnsses 110
5.6.1Token Creation using a GRID Proxy certificate — alien-token-init 110
5.6.2Token Creation using a password — alien-toKken-init............cccccoeeevveeeeveenceeenseeenns 111
5.6.3Token Creation via AliEn Job Token — alien-token-init..............cccceevveeecevernuennuncnn. 112
5.6.4Manual setup of redundant API Service eNndPOINLS..........cccuveeeueeeiueeeciieeniieeeniieeens 112
5.7CHECKING AN API SESSION TOKEN — ALIEN-TOKEN=INFO......00ceesuvreessnreeeesssreeensseeesssseeeesssseesannes 112
5.8DESTROYING AN API SESSION TOKEN — ALIEN-TOKEN=DESTROYeeeuvveeeurreeesureesanseeesanseesssseeennnns 113
5.8.18eSSi0N ENVITONMENE FILES..........ooeeceeieeiiieeiieeeeeeeeeeeee ettt e et eae e e 113
5.9THE ALIEN SHELL — ALIENSH...ccuvteeteeeteesreenreesseesseeessessseeesssesnsssesssessssesssseesssessssesenssessnses 114
5.9, ISREIL INVOCALION. ...c...eoeeeeieeiieeieeee sttt sttt ettt ettt st e s be s e esaesnaaeeas 114
5.9.28REII PTOMPL......c.ooiiieiieiiieeeieeteeeeee ettt et e e 115

3/199

The ALICE Offline Bible

5.9.3SREIL HISTOTY..ccueieuiiieiee ettt ettt ettt sttt ettt ettt st sat e s bt e st aesabaesaneeeas 115
5.9.45hell Environment VATIADIES...............cueeeeeeeeeceeeiieeeieeeeeeseeeiescveessveesisaesaeeseeans 115
5.9.58ingle Command Execution from a uSer SHell...............cccocuevvueveeenveeinieencieeniienneens 115
5.9.68cript File Execution from a user Shell.................cccccoeevininienvinceniniineneeeeneneenes 116
5.9.7Script Flle Eexecution inside aliensh “TUR..........cccccevvveeeiieeiiieiniieniieeiee e eciee s 116
5.9.8Basic aliensh COMMANAS................c..coeeeueeeiieeeciieeeeieeeeteeesiveeesseessseaeseseeesnsseesnnes 116
5.10THE ROOT ALIEN INTERFACEveeottirtiienieeieeniieeieenieeseteeieesseesaseessaessseesnsessssesnseesnsesnnnes 143
5.10. 1Installation of ROOT With ALIEN SUPPOTT.....ccc.veeveieiiiieiieeiieneeeniiesteeieesiie s 143
5.10.2ROO0T Startup with AlIEn support - @ qUICk test...........c..ccccceveevienuieceieceeecinnenne. 145
5.10.3The ROOT TGrid/TALien MOAULE.............cccueeeeeiiiiieiiieiieesieeeieeeieeeite e esiee s 146
S.TTAPPENDIX JDL SYNTAX .evteiiiieieiiiieitieeiteesiteestteeseteeteeeteessbeestaeesseesssaeesseessaesseessessnseennses 153
S.TL LIDL TAZS.....ocoeieiieiieieeeeeet ettt ettt 153

5. 12 APPENDIX JOB STATUS.ceuvteitieeiieiieeeiteesittesteesteesteesseessseessseessseesssesssseessseessseesnsesenssessnses 156
S5.12.1S1ATUS FLOW DIAGTAM..c....coeeeeeeeiieeiieieeeieeie ettt sttt e b e satessiaessseenaeeeas 157
5.12.2Non-Error Status EXPIANGLION................c.cccoevuiecuinieciinieiiiiieieeeeeee e 157
5.12.3E7107 Status EXPIANALION.c...eoveeeeieeieeiieeeeee sttt et ee st sitesteesaeenaeeeas 158
6DISTRIBUTED ANALYSIS 159
6. L A BSTRACT c.vteuveeteeeiteetteeteeteeseteeseesteessbeebeessseaasaeessaesssaasseesssaeseeassaassessssesssaenseesssesseeenses 159
6. 2INTRODUCTION. ... vteeveenteesureesaeesseessseesssesssseasseessseessseenssssnssesssessnseessssessssessessssessssesssesensesnsses 159
6.3FLOW OF THE ANALYSIS PROCEDURE......veeetvteereeseessreessesssssesssesssesssesssseessssessessssessssesssesensesnsnes 160
6.4 ANALYSIS FRAMEWORK ... vvvetveensreesseesnseessseesssessssessessnsesssssesssesssessnsessssessnseesseesnsesssseesssessnses 163
6.5INTERACTIVE ANALYSIS WITH LOCAL ESDS.....iiiiiiiiiiiiiiiieiccieeeteeee e 169
6.5.10DJECt DASEA CUL STFATEZY.....veeeeeeeeeeiieeieesiieeeeieesteesiteessteeeseessreessseessseensseeeseesnnes 170
6.5.25tring based CUt STFALEZY........c..cccueeuiiiiiuiiiiiiieiieeeeeet ettt 171
6.6INTERACTIVE ANALYSIS WITH GRID ESDS......ciiiiiiiiiiiiiiiiiieciiecccee e 172
6. TBATCH ANALYSIS. ..0cuttteutteetteeureeseeeseessseessssesssessssesssessssessseessseesnseesnseesseesseesseessseessseesnses 175
6.7.10Verview Of the framMEWOTK...........cuevcueeeuieiiiieiiieiieeeeestese st eteesae e seseesanesveenees 176
6.7.2USIng the EVent TaZ SYSTEM..........ccccccuueuieiieieeieeeeeeeee ettt 177
0.7.3FTLES NEEAEA.......c..oooeeeeeeieeeeee ettt ettt et et e st e sbe e ssseesbeesebaenaneeees 179
6.7 ATDL SYNIQX.......c.oecuieiiiiiiieieeiee ettt ettt e st s s s 180
6.7.5J0D SUDMISSION = JOD STATUS......cccuveeeeeeeiiieeieeeieesieeeieesteesteesveesaesssaesseaesssaeenaneeens 183
6.7.0MErgiNg the OUIDUL.........cocueeeiiieiiieieieieeeteeete ettt ettt ettt s ate e sbaeesaee e e 184
6.8RUN AND EVENT LEVEL CUT MEMBER FUNCTIONS .. .vveeuuveestreessseessseesseessssesnssessseesssesessseessseesnnses 185
6.8. 1RUN Level MEMDET FUNCIIONS.cccueeeueeeieeeiieeieecieeeie et esaeetesseestaeesaeesssaesssessseenens 185
6.8.2Event level Member fURCHIONS...............cccoecuieeeeueeiieieeieieeieeeeeeee e e 185
6.9STRING BASE OBJECT AND EVENT LEVEL TAGS ..veeuveesttessseesseesssresssesssseessseessaeesseesssessssesssesensessnnes 187
6.9. 1VAFIADIES fOT TUIL CULS....cveeeeeeeeieeiiesieeiee ettt e e eteeteeaeesveesaeesaaessaeesseesnseenseeenens 187
6.9.2Variables fOF @VERE CULS............ccceecueeuieeiieiieiieiiecieeeeeete ettt 187

. TOSUMMARYuvieiieiitieeieeiteesteeteesttestteeteebeesebeessseestesastessseessseensseensaeasseesnseessseenseeenseennses 188
7DISTRIBUTED ANALYSIS 190
T LA BSTRACT cuvtteuteettesiteesiteeteestteeteesttesttessseenttesastesateestassseenbeeeseessseensaesasessaseenseesaseensaansseenas 190
T 2INTRODUCTION. ...ccuttteuteeutesiteesteenttesitesateesabeesteeenbeessstesaseesaseenbeeenseessbaesasessnseenseeenseesssaansessns 190
7.3FLOW OF THE ANALYSIS PROCEDUREL. ...c.uuteruttesuteeteesnreenseesseessesssesenseesseesssessseenseessseessneesssessns 191
T A ANALYSIS FRAMEWORKvteuteeuureenreesnreensseesseeeseesseesnseessesesseesnseesnsaesseesseesseesnseesseessseennees 194
77.5INTERACTIVE ANALYSIS WITH LOCAL ESDS...cccuiiiiiiiiiiieeeee et 201
7.5.10Dject BASEA CUE SITATEZY....cc.uvereeeeiiiriieeieesie ettt ettt stte e e s ite e steesibeesaeeeas 202
7.5.2817iNG DASCA CUL STFATEZY....eeeuveeereeeiieeiieeeiieesiieeeiteestteestaeesstessaeesseesbseeseesnsaeeseeans 203
7.6INTERACTIVE ANALYSIS WITH GRID ESDS.....ccociiiiiiiiiiiceeces e 204

4/199

The ALICE Offline Bible

T TBATCH ANALYSIS . tteuuveesuteesteesuteesseennseessseensseessseessseesssesssseesssesssseesssesnsseessessnseensessnseenssesnns 208
7.7.10verview of the frameWork.............cccccceuivveiiiriiniiiiniieeieeeeeeeeere e 208
7.7.2Using the EVent TAgZ SYSTEML..........c.ccuuiiaiiaiiaieiie ettt 209
7.7 3F0LES ECAC. ...ttt ettt 212
T T ATDL SYREQX.......ococuiiiiiiiiiieiiieeteeee ettt ettt ettt ettt ettt e bt e st e e saee e 212
7.7.5J0b SUDIISSTION = JOD STATUS......c..ooeeeieeieiiiiiiieeiieiieeiee ettt ettt ae e 216
7.7.6METGINgG e OUIPUL...........oceeeeeeiieeeeeieeeeee ettt ettt sttt e e 216

7.8RUN-LHC-DETECTOR AND EVENT LEVEL CUT MEMBER FUNCTIONS......eeeuveeesreesveessreesseessseesnsneenns 217
7.8. IRUN level MEMBET fUNCHIONS.cc..oevueerieeiiesieeeiieeit ettt ettt sttt sbeesaeeeas 217
7.8.2LHC level Member fUNCHIONS.cccccueuererenininteieeteteete sttt ettt seenne e 217
7.8.3Detector level MembBEr fUNCIHIONS.cccueevvueeeeieiiiiesiieesiieesiie et esieesive e seaeeaeeens 217
7.8.4Event level Member fUNCLIONS.c.cocervueeueeviniinieieneeseee et 217

7.9STRING BASE OBJECT AND EVENT LEVEL TAGS .veeuveeurtessseesseesssresssessssesssneesssessseessessssesssesensesssnes 219
7.9.1VATIADIES fOF FUN CULS.....eovueieiieeiiieieeieeettesie ettt sttt et te st e s bt e sae e e saaesaeeens 219
7.9.2Variables fOr LHC CULS.........cc.cccueevueiiecieiieiieieeeecieeeeteee et e 219
7.9.3Variables fOr deteCtOF CULS........c.uuevueireeeeiieeiie et ettt eeteesteestee e e sitessteessbeessaeeeas 219
7.9.4VATIADIES fOF @VEONE CULS.....ccoeeeeeeiiiieiieite ettt ettt sttt sttt e e 220

T LOSUMMARYceutittenie et ettente sttt ettt st e ettt sht et et sbe e s bt e bt eabesbeeseeeatesbtenbeeabeeueenbeenbeebeeebeenbeens 221

SAPPENDIX 223

B IKALMAN FILTER.c.utteeuteentreenueesnseenssesseesssessseesnseenssessssesnsesssseesssessssesssesensassssessssessssesnsesensesnsses 223

8.2BAYESIAN APPROACH FOR COMBINED PARTICLE IDENTIFICATION.vvveeuvreerureessseeeseessnseesseesnseesnnns 224
8.2.1Bayesian PID with a SiNgle deteCtOr...........c.oocceviiiiviiiiiieieiieiiesteeseesie e 224
8.2.2PID combined over SeVeral deteCtOFS...........occuuumiiueiesieieeieeeeesieee e 226
8.2.3Stability with respect to variations of the a priory probabilities............................. 227
8.2.4Features of the Bayesian PID..................ccccoovceiiouirneiiiiiniiienieesieenieeeseesie e 227

8.3VERTEX ESTIMATION USING TRACKS. 1. uvveeureesrreesuresssreesuesssseesssessssessssessssessssessssesssessssessssessnses 228

8. A ALIGNMENT FRAMEWORK ...c.uvteeuttertreesseenseesnseesssesseesssessseenssessessssessesssessseessseesssessseesssesnsessnses 228
8.4.1Basic objects and alignment CONSTANLS.c.ueecuuercueereerieiinieenteeeieeste e e esaieenas 228
8.4.2Use of ROOT geometry fUncCtionality............cocceeceecueeeueeseeseeseee et 233
8.4.3Application of the alignment objects t0 the GEOMELTY...........c..cocueeveeeinseerieianieeannnns 234
8.4.4Access to the CONnditions DAtA BASE...............ccuueeeueeeveeieeeciiesreesieesseecseeseseeseseenens 235
oA SSUIMIAT Y.ttt sttt ettt st sa e st esbe e s sabesabeesabeenabeenees 236

9GLOSSARY 238
10REFERENCES 242

5/199

The ALICE Offline Bible

2 Introduction

Purpose of this document.

2.1About this document

History of the document, origin of the different parts and authors.

2.2Acknowledgements

All those who helped

2.3History of modifications

Who When What

F. Carminati 30/1/07 Initial merge of documents
F. Carminati 19/3/07 Inserted MetaData note
G. Bruckner 1/7/07

W N = HF

6/199

The ALICE Offline Bible

3 The AliRoot primer

3.1About this primer

The aim of this primer is to give some basic information about the ALICE offline
framework (AliRoot) from the users’ perspective. We explain in detail the installation
procedure, and give examples of some typical use cases: detector description, event
generation, particle transport, generation of “summable digits”, event merging,
reconstruction, particle identification, and generation of event summary data.

The primer also includes some examples of analysis, and short description of the
existing analysis classes in AliRoot. An updated version of the document can be
downloaded from:

http://aliceinfo.cern.ch/Offline/AliRoot/Manual.html

For the reader interested by the AliRoot architecture and by the performance studies
done so far, a good starting point is Chapter 4 of the ALICE Physics Performance
Report [']. Another important document is the ALICE Computing Technical Design
Report [7].

Some information contained there has been included in the present document, but most
of the details have been omitted.

AliRoot uses the ROOT [’] system as a foundation on which the framework for
simulation, reconstruction and analysis is built. The Geant3 [*] or FLUKA [°] packages
perform the transport of particles through the detector and simulate the energy
deposition from which the detector response can be simulated. Support for Geant4 [°]
transport package is coming soon.

Except for large existing libraries, such as Pythia6['] and HIJING [’], and some
remaining legacy code, this framework is based on the Object Oriented programming
paradigm, and is written in C++.

The following packages are needed to install the fully operational software distribution:

« ROOT, available from http://root.cern.ch or using the ROOT SVN repository:
http://root.cern.ch/svn/root/

* AliRoot from the ALICE offline SVN repository:
https://alisoft.cern.ch/AliRoot/
e transport packages:
® GEANT 3 is available from the ROOT SVN repository

® FLUKA library can be obtained after registration from
http://www.fluka.org

7/199

The ALICE Offline Bible

® GEANT~4 distribution from http://cern.ch/geant4.

The access to the GRID resources and data is provided by the AliEn [*] system.

The installation details are explained in Section 3.3.

3.2AliRoot framework

In HEP, a framework is a set of software tools that enables data processing. For
example the old CERN Program Library was a toolkit to build a framework. PAW was
the first example of integration of tools into a coherent ensemble, specifically dedicated
to data analysis. The role of the framework is shown in Figure 1.

Comparison
Monte ~— 4——i—>
Carlo :

Particles

Track) candidates

Dis-integrated

response segments

Information

Recohstructed
space points

Summable

Processing
Figure 1: Data processing framework

The primary interactions are simulated via event generators, and the resulting kinematic
tree is then used in the transport package. An event generator produces set of
“particles” with their momenta. The set of particles, where one maintains the production
history (in form of mother-daughter relationship and production vertex), forms the
kinematic tree. More details can be found in the ROOT documentation of class
TParticle. The transport package transports the particles through the set of detectors,
and produces hits, which in ALICE terminology means energy deposition at a given
point. The hits contain also information (“track labels”) about the particles that have
generated them. In case of calorimeters (PHOS and EMCAL) the hit is the energy
deposition in the whole active volume of a detecting element. In some detectors the
energy of the hit is used only for comparison with a given threshold, for example in TOF
and ITS pixel layers.

At the next step, the detector response is taken into account, and the hits are
transformed into digits. As mentioned previously, the hits are closely related to the
tracks that generated them. The transition from hits/tracks to digits/detectors is marked
on the picture as “disintegrated response”, the tracks are “disintegrated” and only the
labels carry the Monte Carlo information.

8/199

The ALICE Offline Bible

There are two types of digits: “summable digits”, where one uses low thresholds and
the result is additive, and “digits”, where the real thresholds are used, and the result is
similar to what one would get in the real data taking. In some sense the “summable
digits” are precursors of the “digits”. The noise simulation is activated when “digits” are
produced. There are two differences between “digits” and the “raw” data format
produced by the detector: firstly, the information about the Monte Carlo particle
generating the digit is kept as data member of the class AliDigit, and secondly, the raw
data are stored in binary format as “payload” in a ROOT structure, while the digits are
stored in ROOT classes. Two conversion chains are provided in AliRoot:

hits - summable digits - digits
hits - digits

The summable digits are used for the so-called “event merging”, where a signal event is
embedded in a signal-free underlying event. This technique is widely used in heavy-ion
physics and allows reusing the underlying events with substantial economy of
computing resources. Optionally, it is possible to perform the conversion

digits — raw data

which is used to estimate the expected data size, to evaluate the high level trigger
algorithms and to carry on the so called computing data challenges. The reconstruction
and the HLT algorithms can both work with digits and with raw data. There is also the
possibility to convert the raw data between the following formats: the format coming
from the front-end electronics (FEE) through the detector data link (DDL), the format
used in the data acquisition system (DAQ) and the “rootified” format. More details are
given in section 3.5.

After the creation of digits, the reconstruction and analysis chains can be activated to
evaluate the software and the detector performance, and to study some particular
signatures. The reconstruction takes as input digits or raw data, real or simulated.

The user can intervene into the cycle provided by the framework and replace any part
of it with his own code or implement his own analysis of the data. /O and user
interfaces are part of the framework, as are data visualization and analysis tools and all
procedures that are considered of general interest to be introduced into the framework.
The scope of the framework evolves with time as do the needs of the physics
community.

The basic principles that have guided the design of the AliRoot framework are
reusability and modularity. There are almost as many definitions of these concepts as
there are programmers. However, for our purpose, we adopt an operative heuristic
definition that expresses our objective to minimize the amount of unused or rewritten
code and maximize the participation of the physicists in the development of the code.

Modularity allows replacement of parts of our system with minimal or no impact on the
rest. We do not expect to replace every part of our system. Therefore we focus on
modularity directed at those elements that we expect to change. For example, we
require the ability to change the event generator or the transport Monte Carlo without
affecting the user code. There are elements that we do not plan to subject to major
modifications, but rather to evolve them in collaboration with their authors such as the

9/199

The ALICE Offline Bible

ROOT 1/O subsystem or the ROOT User Interface (Ul). Whenever an element is
chosen to become a modular one, we define an abstract interface to it. Code
contributions from different detectors are independent so that different detector groups
can work concurrently on the system while minimizing the interference. We understand
and accept the risk that, at some point, the need may arise to modularize a component
that was not initially designed to modular. For these cases, we have elaborated a
development strategy that can handle design changes in production code.

Reusability is the protection of the investment made by the physicist programmers of
ALICE. The code embodies a large amount of scientific knowledge and experience and
thus is a precious resource. We preserve this investment by designing a modular
system in the sense above and by making sure that we maintain the maximum amount
of backward compatibility while evolving our system. This naturally generates
requirements on the underlying framework prompting developments such as the
introduction of automatic schema evolution in ROOT.

Support of the AliRoot framework is a collaborative effort within the ALICE experiment.
Questions, suggestions, topics for discussion and messages are exchanged in the
mailing list alice-off@cern.ch. Bug reports and tasks are submitted on the Savannah
page http://savannah.cern.ch/projects/aliroot.

3.3Installation and development tools

3.3.1 Platforms and compilers

The main development and production platform is Linux on Intel 32 bit processors. The
official Linux ['°] distribution at CERN is Scientific Linux SLC ['']. The code works also
on RedHat ['*] version 7.3, 8.0, 9.0, Fedora Core ['*] 1 —5, and on many other Linux
distributions. The main compiler on Linux is gcc [']: the recommended version is gcc
3.2.3 — 3.4.6. Older releases (2.91.66, 2.95.2, 2.96) have problems in the FORTRAN
optimization that has to be switched off for all FORTRAN packages. AliRoot can be
used with gcc 4.0.X where the FORTRAN compiler g77 is replaced by g95. The last
release series of gcc (4.1) work with gfortran as well. As an option you can use Intel
icc ['°] compiler, which is also supported. You can download it from http:/www.intel.com
and use it free of charge for non-commercial projects. Intel also provides free of charge
the VTune ['°] profiling tool which is one of the best available so far.

AliRoot is supported on Intel 64 bit processors ['"] running Linux. Both the gcc and Intel
icc compilers can be used.

On 64 bit AMD ['] processors, such as Opteron, AliRoot runs successfully with the gcc
compiler.

The software is also regularly compiled and run on other Unix platforms. On Sun
(SunOS 5.8) we recommend the CC compiler Sun WorkShop 6 update 1 C++ 5.2. The
WorkShop integrates nice debugging and profiling facilities that are very useful for code
development.

On Compaq alpha server (Digital Unix V4.0) the default compiler is cxx (Compaq C++

10/199

The ALICE Offline Bible

V6.2-024 for Digital UNIX V4.0F). Alpha also provides its profiling tool pixie, which
works well with shared libraries. AliRoot works also on alpha server running Linux,
where the compiler is gcc.

Recently AliRoot was ported to MacOS (Darwin). This OS is very sensitive to the
circular dependences in the shared libraries, which makes it very useful as test
platform.

3.3.2 Essential SVN information

SVN stadns for Subversion - it is a version control system that enables a group of
people to work together on a set of files (for instance program sources). It also records
the history of files, which allows backtracking and file versioning. Subversion succeded
Concurrent Version Sysytem, and therefore is mostly-compatible to CVS.

The official SVN Web page is http:/subversion.tigris.org/ .

SVN has a host of features, among them the most important are:
* SVN facilitates parallel and concurrent code development;
e it provides easy support and simple access;

SVN has rich set of commands, the most important are described below. There exist
several tools for visualization, logging and control that work with SVN. More information
is available in the SVN documentation and manual ['°].

Usually the development process with SVN has the following features:
» All developers work on their own copy of the project (in one of their directories);

» They often have to synchronize with a global repository both to update with
modifications from other people and to commit their own changes;

« In case of conflicts, it is the developer’s responsibility to resolve the situation,
because the SVN tool can only perform a purely mechanical merge.

Instructions of using Aliroot Subversion can be found on:
http://aliceinfo.cern.ch/Offline/AliRoot/HowTO SVN.html

3.3.3 Main SVN commands

» svn checkout — Check out a working copy from a repository.

% svn co https://alisoft.cern.ch/AiRoot/trunk Ali Root

* svn update — Update your working copy. This command should be called from
inside the working directory to update it. The first character in line for each
updated item, stands for the action taken for this item. The character have the
following meaning:

A - added
D - deleted

11/199

The ALICE Offline Bible

U - updated
C - conflict

G - merged

% svn update

« svn diff — Display the differences between two paths.
% svn diff -r 20943 Makefile

* svn add - Add files, directories, or symboalic links.
% svn -qz9 add Ali TPCseed. *

* svn delete - Delete an item from a working copy or repository.
% svn delete -f CASTOR

« svn commit checks in the local modifications to the repository, send changes of
the working copy and increments the version numbers of the files. In the
example below all the changes made in the different files of the module STEER
will be committed to the repository. The -m option is followed by the log
message. In case you don't provide it an editor window will prompt you to enter
your description. No commit is possible without the log message that explains
what was done.

% svn ci newnare. cXx

e svn status — Print the status of working copy files and directories.With --show-
updates, add working revision and server out-of-date information. With --
verbose, print full revision information on every item.

% svn status Makefile

3.3.4 Environment variables

Before the installation of AliRoot, the user has to set certain environment variables. In
the following examples, we assume that the user is working on Linux and the default
shell is bash. It is sufficient to add to ~/.bash_profile the lines shown below:

ROOT

export ROOTSYS=<ROOT installation directory>

export PATH=$PATH\ : $ROOTSYS/ bi n

export LD LI BRARY_PATH=$LD LI BRARY_PATH : $ROOTSYS/ | i b

Al i Root

export ALI CE=<Ali Root installation directory>

export ALl CE_ROOT=$ALI CE/ Al i Root

export ALICE TARGET="root-config --arch’

export PATH=$PATH : $ALI CE_ROOT/ bi n/ t gt _${ ALI CE_TARGET}

export LD_LI BRARY PATH=$LD_ LI BRARY_PATH\ : $ALI CE_ROOT/ i b/tgt_$
{ ALI CE_TARGET}

12/199

The ALICE Offline Bible

Geant 3
export PLATFORM=root-config --arch’
Optional, defined otherwi se in Geant3 Makefile

export LD LI BRARY_PATH=$LD LI BRARY_PATH : $ALI CE/ geant3/lib/tgt_$
{ ALI CE_TARCET}

FLUKA
export FLUPRO=$ALI CE/fluka # $FLUPRO i s used in TFl uka
export PATH=$PATH\ : $FLUPRO fl uti |

Geant4: see the details later

The meaning of the environment variables is the following:
ROOTSYS directory of the ROOT package;
ALICE top directory for all software packages used in ALICE;

ALICE_ROOT directory where the AliRoot package is located, usually a
subdirectory of ALICE;

ALICE_TARGET specific platform name. Up to release v4-01-Release this variable
was set to the result of “uname” command. Starting from AliRoot
v4-02-05 the ROOT naming schema was adopted, and the user
has to use the “root-config --arch” command in order to know the
proper value.

PLATFORM same as ALICE_TARGET for the GEANT 3 package. Until
GEANT 3 v1-0, the user had to use “uname’ to specify the
platform. From version v1-0 on, the ROOT platform is used instead
("root-config --arch™). This environment variable is set by default in
the Geant 3 Makefile.

3.4Software packages

3.4.1 AliEn

The installation of AliEn is the first one to be done if you plan to access the GRID or
need GRID-enabled ROOT. You can download the AliEn installer and use it in the
following way:

Get the installer:

% wget http://alien.cern.ch/alien-installer
% chnod +x alien-installer
% ./alien-installer

The alien-installer runs a dialog that prompts for the default selection and options. The
default installation place for AliEn is /opt/alien, and the typical packages one has to

13/199

The ALICE Offline Bible

install are “client” and “gshell”.

3.4.2 ROOT

All ALICE offline software is based on ROOT [197]. The ROOT framework offers a
number of important elements that are exploited in AliRoot:

e acomplete data analysis framework including all the PAW features;
« an advanced Graphic User Interface (GUI) toolkit;

« alarge set of utility functions, including several commonly used mathematical
functions, random number generators, multi-parametric fit and minimization
procedures;

* acomplete set of object containers;

* integrated I/O with class schema evolution;
» C++ as a scripting language;

* documentation tools.

There is a useful ROOT user's guide that incorporates important and detailed
information. For those who are not familiar with ROOT, a good starting point is the
ROOT Web page at http:/root.cern.ch. Here, the experienced user may find easily the
latest version of the class descriptions and search for useful information.

The recommended way to install ROOT is from the SVN sources, as it is shown below:

1. Get a specific version (>= 2.25/00), e.g.: version 2.25/03:
prompt% svn co http://root.cern.ch/svn/root/tags/v2-25-03 root

2. Alternatively, checkout the head (development version) of the sources:

pronpt % svn co http://root.cern.ch/svn/root/trunk root

In both cases you should have a subdirectory called "root" in the directory you
ran the above commands in.

The appropriate combinations of ROOT, Geant 3 and AliRoot versions can be
found at http://aliceinfo.cern.ch/Offline/AliRoot/Releases.html

The code is stored in the directory “root”. You have to go there, set the
ROOTSYS environment variable (if this is not done in advance), and configure
ROOT. The ROOTSYS contains the full path to the ROOT directory.

ROOT Configuration
#1/bin/sh

cd root
export ROOTSYS=" pwd®

ALlI EN_ROOT=/ opt/ al i en

./configure \
--wi t h- pyt hi a6- uscor e=SI NGLE \

14/199

The ALICE Offline Bible

--enabl e-cern --enable-rfio \

--enabl e-mat hnore --enabl e-mat hcore --enabl e-roofit \

--enabl e-asi mage --enable-mnuit2 \

--enable-alien --with-alien-incdir=${ALI EN_ROOT}/ api /i ncl ude \
--with-alien-libdir=${ALI EN ROOT}/api/lib

3. Now you can compile and test ROOT

Compiling and testing ROOT
#!/bin/sh

make

make map

cd test

make

export LD LI BRARY_PATH=$LD LI BRARY_PATH: .
export PATH=$LD LI BRARY_PATH: .
./stress

./ stressFit

./ stressGeonetry

./ stressG aphics

./ stressHepi x

./ stressLinear

./ stressShapes

./ stressSpectrum

./ stressVect or

At this point the user should have a working ROOT version on a Linux (32 bit Pentium
processor with gcc compiler). The list of supported platforms can be obtained by
“./configure --help” command.

3.4.3 GEANT 3

The installation of GEANT~3 is needed, because it currently is the default particle
transport package. A GEANT~3 description is available at
http://wwwasdoc.web.cern.ch/wwwasdoc/geant htmi3/geantall.html.

You can download the GEANT 3 distribution from the ROOT SVN repository and
compile it in the following way:

make GEANT 3

cd $ALI CE
svn co https://root.cern.ch/svn/geant3/tags/vl-9 geant3
cd $ALI CE/ geant 3
export PLATFORME root-config --arch’

make

Please note that GEANT 3 is downloaded into the $ALICE directory. Another important
feature is the PLATFORM environment variable. If it is not set, the Geant 3 Makefile will
set it to the result of “root-config --arch’.

15/199

The ALICE Offline Bible

3.4.4 GEANT 4

To use GEANT [197], some additional software has to be installed. GEANT 4 needs
the CLHEP [*°] package, the user can get the tar file (or “tarball’) from http:/proj-
clhep.web.cern.ch/proj-clhep. Then, the installation can be done in the following way:

make CLHEP

tar zxvf clhep-2.0.3.1.tgz

cd 2.0.3.1/ CLHEP

./configure --prefix=$ALI CE/ CLHEP # Sel ect the place to install CLHEP
nmake

make check

make install

Another possibility is to use the CLHEP CVS repository:
make CLHEP from CVS

cvs -d :pserver:anonynous@l hep. cvs. cern. ch:/cvs/ CLHEP | ogi n
Enpty password
cvs -d :pserver:anonynmous@l hep. cvs. cern. ch:/cvs/ CLHEP \
co -r CLHEP_2_0_3_1 CLHEP
cd CLHEP
./ bootstrap
./configure --prefix=$ALI CE/ CLHEP # Sel ect the place to install CLHEP
make
make check
make install

Now the following lines should be added to ~/.bash_profile:

% export CLHEP_BASE_DI R=$ALI CE/ CLHEP

The next step is to install GEANT 4. The GEANT 4 distribution is available from
http://geant4.web.cern.ch/geant4. Typically the following files will be downloaded (the
current versions may differ from the ones below):

e geant4.8.1.p02.tar.gz: source tarball

* G4NDL.3.9.tar.gz: G4ANDL version 3.9 neutron data files with thermal cross
sections

G4EMLOWA4.0.tar.gz: data files for low energy electromagnetic processes -
version 4.0

* PhotonEvaporation.2.0.tar.gz: data files for photon evaporation - version 2.0

» RadiativeDecay.3.0.tar.gz: data files for radioactive decay hadronic processes -
version 3.0

e G4ELASTIC.1.1.tar.gz: data files for high energy elastic scattering processes -

16/199

The ALICE Offline Bible

version 1.1
Then the following steps have to be executed:

make GEANT4

tar zxvf geant4.8.1.p02.tar.gz
cd geant4.8.1.p02

nkdir data

cd data

tar zxvf ../../ANDL.3.9.tar.gz

tar zxvf ../../GAEMLOM.O0.tar.gz

tar zxvf ../../PhotonEvaporation.2.0.tar.gz
tar zxvf ../../RadiativeDecay.3.0.tar.gz
tar zxvf ../../AELASTIC 1.1.tar.gz

cd ..

Configuration and conpilation

./ Configure -build

As answer choose the default value, except of the following:

Geant4 library path: $ALICE/geant4
Copy all Geant4 headers in one directory? Y
CLHEP location: $ALICE/CLHEP
build 'shared’ (.so) libraries? Y
G4VIS_BUILD_OPENGLX_DRIVER and G4VIS_USE_OPENGLX Y
G4LIB_BUILD_G3TOG4 Y

Now a long compilation...

For installation in the selected place ($ALICE/geant4):
./ Configure -install

Environment variables - The execution of the env.sh script can be done from the
~/.bash_profile to have the GEANT~4 environment variables initialized automatically.
Please note the "dot" in the beginning:

The <platforne has to be replaced by the actual value
$ALI CE/ geant 4/ src/ geant 4/ . confi g/ bi n/ <pl atf orn»/ env. sh

17/199

The ALICE Offline Bible

3.4.5 FLUKA

The installation of FLUKA [197] consists of the following steps:

1. register as FLUKA user at http://www.fluka.org if you have not yet done so. You
will receive your “fuid” number and will set you password;

2. download the latest FLUKA version from http://www.fluka.org. Use your “fuid”
registration and password when prompted. You will obtain a tarball containing
the FLUKA libraries, for example fluka2006.3-linuxAA.tar.gz

3. install the libraries;

4. install FLUKA

Make fluka subdirectory in $ALICE
cd $ALI CE
nkdi r fl uka

Unpack the FLUKA libraries in the $ALICE/ fluka directory.
Pl ease set correctly the path to the FLUKA tarball.

cd fluka

tar zxvf <path_to_fluka_tarball>/fluka2006. 3-1inuxAA tar.gz

Set the environnment variabl es
export FLUPRO=$ALI CE/ f | uka

5. compile TFluka;

% cd $ALI CE_ROOT
% make al | - TFl uka

6. run AliRoot using FLUKA;

% cd $ALI CE_ROOT/ TFl uka/ scripts
% ./ runfl ukageo. sh

7. This script creates the directory ‘tmp’ as well as all the necessary links for data
and configuration files, and starts AliRoot. For the next run, it is not necessary
to run the script again. The ‘tmp’ directory can be kept or renamed. The user
should run AliRoot from within this directory.

8. From the AliRoot prompt start the simulation;

root [0] AliSinulation sim
root [1] sim Run();

9. You will get the results of the simulation in the ‘tmp’ directory.

10. reconstruct the simulated event;

% cd tnmp
% al i root

11. and from the AliRoot prompt

root [0] Ali Reconstruction rec;
root [1] rec.Run();

12. report any problem you encounter to the offline list alice-off@cern.ch.

18/199

The ALICE Offline Bible

3.4.6 AliRoot

The AliRoot distribution is taken from the SVN repository and then

% cd $ALI CE

% svn co https://alisoft.cern.ch/A i Root/trunk Al i Root
% cd $ALI CE ROOT

% make

The AliRoot code (the above example retrieves the HEAD version from CVS) is
contained in $ALICE_ROOT directory. The $ALICE_TARGET is defined automatically
in the .bash_profile} via the call to “root-config --arch’.

3.4.7 Debugging

While developing code or running some ALICE program, the user may be confronted
with the following execution errors:

Floating exceptions: division by zero, sqgrt from negative argument, assignment
of NaN, etc.

Segmentation violations/faults: attempt to access a memory location which it is
not allowed to access by the operating system.

Bus error: attempt to access memory that the computer cannot address.

In this case, the user will have to debug the programme in order to determine the
source of the problem and fix it. There are several debugging techniques, which are
briefly listed below:

using printf(...), std::cout, assert(...) and AliDebug.
® often this is the only easy way to find the origin of the problem;

® assert(...) aborts the program execution if the argument is FALSE. It is
a macro from cassert, it can be inactivated by compiling with
-DNDEBUG.

using the GNU Debugger (gdb), see http://sourceware.org/gdb/

® gdb needs compilation with -g option. Sometimes -O2 -g prevents from
exact tracing, so it is save to use compilation with -O0 -g for debugging
purposes;

® One can use it directly (gdb aliroot) or attach it to a process (gdb aliroot
12345 where 12345 is the process id).

Below we report the main gdb commands and their descriptions:

run starts the execution of the program;
Control-C stops the execution and switches to the gdb shell;

where <n> prints the program stack. Sometimes the program stack is very
long. The user can get the last n frames by specifying n as a parameter to

19/199

The ALICE Offline Bible

where;

e print prints the value of a variable or expression;
(gdb) print *this

e up and down are used to navigate through the program stack;
e quit exits the gdb session;

< break sets break point;

(gdb) break AliLoader.cxx: 100
(gdb) break 'AliLoader:: AliLoader()'

The automatic completion of the class methods via tab is available in case an
opening quote (°) is put in front of the class name.

« cont continues the run;

e watch sets watchpoint (very slow execution). The example below shows how
to check each change of fData;
(gdb) watch *fData

» list shows the source code;

* help shows the description of commands.

3.4.8 Profiling

Profiling is used to discover where the program spends most of the time, and to
optimize the algorithms. There are several profiling tools available on different
platforms:

e Linux tools:
® gprof: compilation with -pg option, static libraries
® oprofile: uses kernel module
® VTune: instruments shared libraries.

* Sun: Sun workshop (Forte agent). It needs compilation with profiling option
(-pg)
« Compaq Alpha: pixie profiler. Instruments shared libraries for profiling.

On Linux AliRoot can be built with static libraries using the special target “profile”

% make profile

change LD _LI BRARY_PATH to replace lib/tgt_linux with
l'ib/tgt_|inuxPROF

change PATH to replace bin/tgt_linux with bin/tgt_|inuxPROF

% al i r oot
root [0] gAlice->Run()
root [1] .q

20/199

The ALICE Offline Bible

At the end of an AliRoot session, a file called ‘gmon.out’ will be created. It contains the
profiling information that can be investigated using gprof.

% gprof “which aliroot™ | tee gprof.txt
% nore gprof.txt

VTune profiling tool

VTune is available from the Intel Web site
http://www.intel.com/software/products/index.htm. It is free for non-commercial use on
Linux. It provides possibility for call-graph and sampling profiling. VTune uses shared
libraries and is enabled via the ‘-g’ option during compilation. Here is an example of call-
graph profiling:

Regi ster an activity

% vtl activity sim-c callgraph -app aliroot," -b -q simC"' -noi
al i root

% vtl run sim

% vtl show

% vtl viewsim:rl -gui

3.4.9 Detection of run time errors

The Valgrind tool can be used for detection of run time errors on linux. It is available
from http://www.valgrind.org. Valgrind is equipped with the following set of tools which
are important for debugging AliRoot:

e memcheck for memory management problems;
e cachegrind: cache profiler;
* massif: heap profiler;

Here is an example of Valgrind usage:

% val grind --tool =addrcheck --error-limt=no aliroot -b -qg simC

ROOT memory checker

The ROOT memory checker does not work with the current version of ROOT. This
section is for reference only.

The ROOT memory checker provides tests of memory leaks and other problems
related to new/delete. It is fast and easy to use. Here is the recipe:

« link aliroot with -INew. The user has to add ‘--new’ before ‘--glibs’ in the
ROQOTCLIBS variable of the Makefile;

21/199

The ALICE Offline Bible

¢ Root.MemCheck: 1 in .rootrc
e run the program: aliroot -b -q sim.C
e run memprobe -e aliroot

* Inspect the files with .info extension that have been generated.

3.4.10Useful information LSF and CASTOR

The information in this section is included for completeness: users are strongly advised
to rely on the GRID tools for productions and data access.

LSF (Load Sharing Facility) is the batch system at CERN. Every user is allowed to
submit jobs to the different queues. Usually the user has to copy some input files
(macros, data, executables, libraries) from a local computer or from the mass-storage
system to the worker node on Ixbatch, to execute the program, and to store the results
on the local computer or in the mass-storage system. The methods explained in the
section are suitable, if the user doesn't have direct access to a shared directory, for
example on AFS. The main steps and commands are described below.

In order to have access to the local desktop and to be able to use scp without
password, the user has to create pair of SSH keys. Currently Ixplus/Ixbatch uses RSA1
cryptography. After a successful login to Ixplus, the following has to be done:

% ssh-keygen -t rsal

Use enpty password

% cp .ssh/identity.pub public/authorized_keys

%In -s ../public/authorized_keys .ssh/authorized_keys

A list of useful LSF commands is given below:
« bqueues — shows available queues and their status;

¢ bsub -q 8nm job.sh — submits the shell script ‘job.sh’ to the queue 8nm, where
the name of the queue indicates the “normalized CPU time” (maximal job
duration 8 min of normalized CPU time);

< bjobs —lists all unfinished jobs of the user;

e Isrun -m IxbXXXX xterm — returns a xterm running on the batch node
IXoXXXX. This allows you to inspect the job output and to debug a batch job.

Each batch job stores the output in directory ‘LSFJOB_XXXXXX’, where ‘XXXXXX’ is
the job id. Since the home directory is on AFS, the user has to redirect the verbose
output, otherwise the AFS quota might be exceeded and the jobs will fail.

The CERN mass storage system is CASTOR2 [*']. Every user has his/her own
CASTOR2 space, for example /castor/cern.ch/user/p/phristov.

The commands of CASTOR2 start with prefix “ns” of “rf”. Here is very short list of useful
commands:

22/199

The ALICE Offline Bible

* nsls /castor/cern.ch/user/p/phristov lists the CASTOR space of user
phristov;

- ridir /castor/cern.ch/user/p/phristov the same as above, but the output is in
long format;

« nsmkdir test creates a new directory ‘test’ in the CASTOR space of the user;

« rfcp /castor/cern.ch/user/p/phristov/test/galice.root copies the file from
CASTOR to the local directory. If the file is on tape, this will trigger the stage-in
procedure, which might take some time.

« rfcp AlIESDs.root /castor/cern.ch/p/phristov/test copies the local file
‘AliIESDs.root’ to CASTOR in the subdirectory ‘test’ and schedules it for
migration to tape.

The user also has to be aware, that the behavior of CASTOR depends on the
environment variables RFIO_USE_CASTOR_V2 (=YES), STAGE_HOST (=castoralice)
and STAGE_SVCCLASS (=default). They are set by default to the values for the group
(z2 in case of ALICE).

Below the user can find a job example, where the simulation and reconstruction are run
using the corresponding macros ‘sim.C’ and ‘rec.C’.

An example of such macros will be given later.

LSF example job
#! /[bin/sh
Take all the C++ nmacros fromthe | ocal conputer to the working
directory

conmand scp phristov@cepal i ce69:/ hone/ phristov/pp/*.C .

Execute the sinulation nmacro. Redirect the output and error streans
comand aliroot -b -g simC > simlog 2>&1

Execute the reconstruction nmacro. Redirect the output and error
streans

comand aliroot -b -q rec.C > rec.log 2>&1

Create a new CASTOR directory for this job ($LSB_JOBI D)
command rfnkdir /castor/cern.ch/user/p/phristov/pp/$LSB _JOBI D

Copy all log files to CASTOR

for ain *.log; do rfcp $a /
castor/cern.ch/user/p/ phristov/pp/$LSB_JOBI D; done

Copy all ROOT files to CASTOR

for ain *.root; do rfcp $a /
castor/cern.ch/user/p/ phristov/pp/$LSB_JOBI D, done

23/199

The ALICE Offline Bible

3.5Simulation

3.5.1 Introduction

Heavy-ion collisions produce a very large number of particles in the final state. This is a
challenge for the reconstruction and analysis algorithms. Detector design and
development of these algorithms require a predictive and precise simulation of the
detector response. Model predictions, as discussed in the first volume of Physics
Performance Report for the charged multiplicity at LHC in Pb—Pb collisions, vary from
1400 to 8000 particles in the central unit of rapidity. The experiment was designed when
the highest available nucleon—nucleon center-of-mass energy heavy-ion interactions
was at 20 GeV per nucleon—nucleon pair at CERN SPS, i.e. a factor of about 300 less
than the energy at LHC. Recently, the RHIC collider came online. Its top energy of
200 GeV per nucleon—nucleon pair is still 30 times less than the LHC energy. The RHIC
data seem to suggest that the LHC multiplicity will be on the lower side of the interval.
However, the extrapolation is so large that both the hardware and software of ALICE
have to be designed for the highest multiplicity. Moreover, as the predictions of different
generators of heavy-ion collisions differ substantially at LHC energies, we have to use
several of them and compare the results.

The simulation of the processes involved in the transport through the detector of the
particles emerging from the interaction is confronted with several problems:

« Existing event generators give different answers on parameters such as
expected multiplicities, p_T-dependence and rapidity dependence at LHC
energies.

» Most of the physics signals, like hyperon production, high-p;phenomena, open
charm and beauty, quarkonia etc. are not exactly reproduced by the existing
event generators.

» Simulation of small cross-sections would demand prohibitively high computing
resources to simulate a number of events that is commensurable with the
expected number of detected events in the experiment.

» Existing generators do not provide for event topologies like momentum
correlations, azimuthal flow etc.

Nevertheless, to allow efficient simulations, we have adopted a framework that allows
for a number of options:

» The simulation framework provides an interface to external generators, like
HIJING [197] and DPMJET [*].

* A parameterized, signal-free, underlying event where the produced multiplicity
can be specified as an input parameter is provided.

* Rare signals can be generated using the interface to external generators like
PYTHIA or simple parameterizations of transverse momentum and rapidity
spectra defined in function libraries.

24/199

The ALICE Offline Bible

« The framework provides a tool to assemble events from different signal
generators (event cocktails).

» The framework provides tools to combine underlying events and signal events
at the primary particle level (cocktail) and at the summable digit level (merging).

» “afterburners” are used to introduce particle correlations in a controlled way. An
afterburner is a program which changes the momenta of the particles produced
by another generator, and thus modifies the multi-particle momentum
distributions, as desired.

The implementation of this strategy is described below. The results of different Monte
Carlo generators for heavy-ion collisions are described in section 3.5.4.

3.5.2 Simulation framework

The simulation framework covers the simulation of primary collisions and generation of
the emerging particles, the transport of particles through the detector, the simulation of
energy depositions (hits) in the detector components, their response in form of so called
summable digits, the generation of digits from summable digits with the optional
merging of underlying events and the creation of raw data.

The AliSimulation class provides a simple user interface to the simulation framework.
This section focuses on the simulation framework from the (detector) software
developer point of view.

o Simulation | Reconstruction

T tua
AliG t

g i e[]era or .-.T.\/|rtua!MC

0

i)

c

0

=

Q

=

Q

=

o

Q

i

Figure 2: Simulation framework.

Generation of Particles

Different generators can be used to produce particles emerging from the collision. The
class AliGenerator is the base class defining the virtual interface to the generator
programs. The generators are described in more detail in the ALICE PPR Volume 1 and
in the next chapter.

Virtual Monte Carlo

25/199

The ALICE Offline Bible

A class derived from TVirtualMC performs the simulation of particles traversing the
detector components. The Virtual Monte Carlo also provides an interface to construct
the geometry of detectors. The geometrical modeller TGeo does the task of the
geometry description. The concrete implementation of the virtual Monte Carlo
application TVirtualMCApplication is AlIMC. The Monte Carlos used in ALICE are
GEANT 3.21, GEANT 4 and FLUKA. More information can be found on the VMC Web
page: http://root.cern.ch/root/vmc.

As explained above, our strategy was to develop a virtual interface to the detector
simulation code. We call the interface to the transport code ‘virtual Monte Carlo’. It is
implemented via C++ virtual classes and is schematically shown in Figure 3.
Implementations of those abstract classes are C++ programs or wrapper classes that
interface to FORTRAN programs.

=G3 Transport

Event Generators » @G3

(AliGenerator)
~G3 Geometry

~G4 Transport

User :
Detector - VMC — - G4
Description Code »G4 Geometry
» FLUKA — FLUGG
~FLUKA Transport

Figure 3. Virtual Monte Carlo

Thanks to the virtual Monte Carlo, we have converted all FORTRAN user code
developed for GEANT 3 into C++, including the geometry definition and the user scoring
routines, StepManager. These have been integrated in the detector classes of the
AliRoot framework. The output of the simulation is saved directly with ROOT 1/O,
simplifying the development of the digitization and reconstruction code in C++.

Modules and Detectors

A class derived from AliModule describes each module of the ALICE detector. Classes
for active modules (i.e. detectors) are not derived directly from AliModule but from its
subclass AliDetector. These base classes define the interface to the simulation
framework via a set of virtual methods.

Configuration File (Config.C)

The configuration file is a C++ macro that is processed before the simulation starts. It
creates and configures the Monte Carlo object, the generator object, the magnetic field
map and the detector modules. A detailed description is given below.

Detector Geometry

The virtual Monte Carlo application creates and initializes the geometry of the detector
modules by calling the virtual functions CreateMaterials, CreateGeometry, Init and

26/199

The ALICE Offline Bible

BuildGeometry.
Vertexes and Particles

In case the simulated event is intended to be merged with an underlying event, the
primary vertex is taken from the file containing the underlying event by using the vertex
generator AliVertexGenFile. Otherwise, the primary vertex is generated according to
the generator settings. Then the particles emerging from the collision are generated and
put on the stack (an instance of AliStack). The Monte Carlo object performs the
transport of particles through the detector. The external decayer AliDecayerPythia
usually handles the decay of particles.

Hits and Track References

The Monte Carlo simulates the transport of a particle step by step. After each step the
virtual method StepManager of the module in which the particle currently is located is
called. In this StepManager method, calling AddHit creates the hits in the detector.
Optionally also track references (location and momentum of simulated particles at
selected places) can be created by calling AddTackReference. AddHit has to be
implemented by each detector whereas AddTackReference is already implemented in
AliModule. The detector class manages the container and the branch for the hits — and
for the (summable) digits — via a set of so-called loaders. The relevant data members
and methods are fHits, fDigits, ResetHits, ResetSDigits, ResetDigits, MakeBranch and
SetTreeAddress.

For each detector methods like PreTrack, PostTrack, FinishPrimary, FinishEvent and
FinishRun are called during the simulation when the conditions indicated by the method
names are fulfilled.

Summable Digits

Calling the virtual method Hits2SDigits of a detector creates summable digits. This
method loops over all events, creates the summable digits from hits and stores them in
the sdigits file(s).

Digitization and Merging

Dedicated classes derived from AliDigitizer are used for the conversion of summable
digits into digits. Since AliDigitizer is a TTask, this conversion is done for the current
event by the Exec method. Inside this method the summable digits of all input streams
have to be added, combined with noise, converted to digital values taking into account
possible thresholds, and stored in the digits container.

An object of type AliRunDigitizer manages the input streams (more than one in case of
merging) as well as the output stream. The methods GetNinputs, GetlnputFolderName
and GetOutputFolderName return the relevant information. The run digitizer is
accessible inside the digitizer via the protected data member fManager. If the flag
fRegionOfinterest is set, only detector parts where summable digits from the signal
event are present should be digitized. When Monte Carlo labels are assigned to digits,
the stream-dependent offset given by the method GetMask is added to the label of the
summable digit.

The detector specific digitizer object is created in the virtual method CreateDigitizer of

27/199

The ALICE Offline Bible

the concrete detector class. The run digitizer object is used to construct the detector
digitizer. The Init method of each digitizer is called before the loop over the events is
started.

A direct conversion from hits directly to digits can be implemented in the method
Hits2Digits of a detector. The loop over the events takes place inside the method. Of
course merging is not supported in this case.

An example of a simulation script that can be used for simulation of proton-proton
collisions is provided below:

Simulation run
void sin(lnt_t nev=100) {
Al'i Simul ation sinmulator;
/1 Measure the total time spent in the simulation
TSt opwat ch ti mer;
timer.Start();

/1 List of detectors, where both sumuable digits and digits are
provi ded

si mul at or. Set MakeSDi gi t s(" TRD TOF PHOS EMCAL HWPI D MUON ZDC PMD FMD
TO VZERQ');

/1 Direct conversion of hits to digits for faster processing (I TS TPC)
si mul at or. Set MakeDi gi tsFromHi ts("I TS TPC");

si mul at or. Run(nev) ;

timer. Stop();

timer.Print();

}

The following example shows how one can do event merging:

Event merging

void sim(Int_t nev=6) {

Ali Si mul ation sinul ator;
/1 The underlying events are stored in a separate directory.
/1 Three signal events will be nmerged in turn with each
/'l underlying event

simul ator. MergeWth("../backgr/galice.root", 3);

si mul at or. Run(nev) ;

}

Raw Data

The digits stored in ROOT containers can be converted into the DATE [*°] format that
will be the “payload’ of the ROOT classes containing the raw data. This is done for the
current event in the method Digits2Raw of the detector.

The class AliSimulation manages the simulation of raw data. In order to create raw
data DDL files, it loops over all events. For each event it creates a directory, changes to
this directory and calls the method Digits2Raw of each selected detector. In the
Digits2Raw method the DDL files of a detector are created from the digits for the
current event.

28/199

The ALICE Offline Bible

For the conversion of the DDL files to a DATE file the AliSimulation class uses the tool
dateStream. To create a raw data file in ROOT format with the DATE output as payload
the program alimdc is utilized.

The only part that has to be implemented in each detector is the Digits2Raw method of
the detectors. In this method one file per DDL has to be created following the
conventions for file names and DDL IDs. Each file is a binary file with a DDL data
header in the beginning. The DDL data header is implemented in the structure
AliRawDataHeader. The data member fSize should be set to the total size of the DDL
raw data including the size of the header. The attribute bit 0 should be set by calling the
method to indicate that the data in this file is valid. The attribute bit 1 can be set to
indicate compressed raw data.

The detector-specific raw data is stored in the DDL files following the DDL data header.
The format of this raw data should be as close as possible to the one that will be
delivered by the detector. This includes the order in which the channels will be read out.

Below we show an example of raw data creation for all the detectors:

void sim(Int_t nev=l) {

Ali Simulation sinul ator;

/! Create raw data for ALL detectors, rootify it and store in the
/1l file raw,root. Do not delete the internediate files

simul ator. Set Wit eRawDat a(" ALL", "raw. root ", KFALSE) ;

si mul at or. Run(nev);

}

3.5.3 Configuration: example of Config.C

The example below contains as comments the most important information:

Example of Config.C

/'l Function converting pseudorapidity
/1 interval to polar angle interval. It is used to set
/1 the limts in the generator
Fl oat _t EtaToTheta(Fl oat _t arg){
return (180./TMath::Pi())*2.*atan(exp(-arg));

/1 Set Random Nunber seed using the current tine
TDati me dat;
static U nt_t sseed = dat. Cet();

voi d Config()

{
gRandom >Set Seed(sseed);

cout <<" Seed for random nunber generation= "<<gRandom >Cet Seed()
<<endl ;

29/199

The ALICE Offline Bible

/1 Load GEANT 3 library. It has to be in LD_LI BRARY_PATH
gSystem >Load("| i bgeant 321");

/1 Instantiation of the particle transport package. gMC is set
internaly

new TCGeant 3TGeo("C++ Interface to Geant3");

/1 Create run | oader and set sone properties
Al'i RunLoader* rl = Ali RunLoader:: Qpen("galice.root",

Ali Confi g:: Get Def aul t Event Fol der Nane
0.

"recreate");
if (!'rl) Fatal ("Config.C',"Can not instatiate the Run Loader");
rl->Set Conpr essi onLevel (2);
rl->Set Nunmber Of Event sPer Fi | e(3);

/1 Register the run | oader in gAlice
gAl i ce- >Set RunLoader (rl);

/'l Set external decayer
TVi rt ual MCDecayer *decayer = new Al i Decayer Pyt hia();

decayer - >Set ForceDecay(kAl |); // kAl neans no specific decay is
forced

decayer->Init();

/'l Register the external decayer in the transport package
gMC- >Set Ext er nal Decayer (decayer);

/| STEERI NG paraneters FOR ALI CE SI MJLATI ON

/1 Specify event type to be transported through the ALICE setup
/1 Al positions are in cm angles in degrees, and P and E in GV
/1 For the details see the GEANT 3 manual

/1 Switch on/off the physics processes (gl obal)

/1 Please consult the file data/galice.cuts for detector
/1 specific settings, i.e. DRAY

gMC- >Set Process("DCAY",1); // Particle decay

gMC- >Set Process("PAIR', 1); // Pair production

gMC- >Set Process("COW", 1); // Conpton scattering

gMC- >Set Process("PHOT", 1); // Photo effect

gMC- >Set Process("PFI S",0); // Photo fission

gMC- >Set Process("DRAY",0); // Delta rays

gMC- >Set Process("ANNI ", 1); // Positron annihil ation

gMC- >Set Process("BREM', 1); // Brenstrahl ung

gMC- >Set Process("MJUNU', 1); // Mion nuclear interactions
gMC- >Set Process("CKOV', 1); // Cerenkov production

gMC- >Set Process("HADR', 1); // Hadronic interactions

gMC- >Set Process("LOSS", 2); // Energy |oss (2=conplete fluct.)
gMC- >Set Process("MJLS",1); // Miltiple scattering

gMC- >Set Process("RAYL", 1); // Rayleigh scattering

/1 Set the transport package cuts

30/199

The ALICE Offline Bible

Float t cut = 1.e-3; /1 1MeV cut by default
Float _t tofmax = 1.el0;

gMC- >Set Cut (" CUTGAM', cut); // Cut for ganmas

gMC- >Set Cut (" CUTELE", cut); // Cut for electrons

gMC- >Set Cut (" CUTNEU', cut); // Cut for neutral hadrons
gMC- >Set Cut (" CUTHAD', cut); // Cut for charged hadrons
gMC- >Set Cut (" CUTMJO', cut); // Cut for nuons

gMC- >Set Cut ("BCUTE", cut); // Cut for electron brens.
gMC- >Set Cut ("BCUTM', cut); // Cut for nuon brens.

gMC- >Set Cut ("DCUTE", «cut); // Cut for electron delta-rays
gMC- >Set Cut ("DCUTM', cut); // Cut for nuon delta-rays
gMC- >Set Cut (" PPCUTM', cut); // Cut for e+e- pairs by nuons
gMC- >Set Cut (" TOFMAX", tofmax); // Time of flight cut

/] Set up the particle generation

/1 Al'i GenCocktail permits to conbine several different generators
Al'i GenCocktail *gener = new Ali GenCocktail ();

/1 The phi range is always inside 0-360
gener - >Set Phi Range(0, 360);

/1 Set pseudorapidity range from-8 to 8.

Float _t thmin = EtaToTheta(8); /! theta min. <—-> eta nmax
Float _t thmax = EtaToTheta(-8); // theta max. <—> eta mn
gener - >Set Thet aRange(t hm n, t hmax) ;

gener->SetOrigin(0, 0, 0); // vertex position

gener->Set Si gma(0, 0, 5.3); /1 Sigma in (X Y,Z) (cm on IP
position

gener - >Set Cut Vert exZ(1.); /1 Truncate at 1 sigma

gener - >Set Ver t exSnear (kPer Event) ;

/1 First cocktail conponent: 100 " background'' particles
Al'i GenHl JI NGpara *hijingparam = new Al i GenHl JI NGpar a(100) ;
hi j i ngpar am >Set Morrent unRange(0. 2, 999);

gener - >AddGener at or (hi j i ngparam "H JI NG PARAM', 1) ;

/1 Second cocktail conponent: one gamm in PHOS direction
Al'i GenBox *genbox = new Al i GenBox(1);

genbox- >Set Morment unRange(10, 11.);

genbox- >Set Phi Range(270. 5, 270. 7) ;

genbox- >Set Thet aRange(90. 5, 90. 7) ;

genbox- >Set Part (22);

gener - >AddCener at or (genbox, " GENBOX GAMVA for PHOS", 1);

gener->lnit(); // Initialization of the coctail generator
/1 Field (the |ast parameter is 1 =>13 0.4 1)

Al i MagFMaps* field = new Al i MagFMaps(" Maps", "Maps", 2, 1., 10., 1);
gAlice->SetField(field);

31/199

The ALICE Offline Bible

/1 Make sure the current ROOT directory is in galice.root
rl->CdGAFi | e();

/1 Build the setup and set sone detector paraneters

/1 ALI CE BODY paraneters. BODY is al ways present
Al i BODY *BCODY = new Al i BODY(" BODY", "ALICE envel op");

/1 Start with Magnet since detector |ayouts may be dependi ng
/1 on the sel ected Magnet di nensions
Ali MAG *MAG = new Al i MAG(" MAG', "Magnet");

Al'i ABSO *ABSO = new Al i ABSOvO("ABSO', "Mion Absorber"); /1
Absor ber
Ali DI PO *DI PO = new Ali DI POv2("DI PO', "Dipole version 2"); /1

Di pol e nagnet

Al'i HALL *HALL
Hal |

new Ali HALL("HALL", "ALICE Hal|l"); I

Al i FRAMEV2 *FRAME = new Al i FRAMEV2(" FRAME", "Space Frane"); I
Space frane

AliSH L *SH'L = new Ali SHI Lv2("SHI L", "Shielding Version 2"); //
Shi el di ng

Ali PIPE *PIPE = new Ali PI PEvO("PI PE", "Beam Pipe"); I
Beam pi pe

/1 I TS paraneters
Al'i | TSYPPRasymmFMD *I TS = new Ali | TSYPPRasymFMX("I TS",
"I'TS PPR detail ed version with asymetric services");

I TS- >Set M nor Ver si on(2) ; /1 don't change it if you're not an
I TS devel oper
| TS- >Set ReadDet (KFALSE) ; /1 don't change it if you're not an

I TS devel oper

| TS- >Set Thi cknessDet 1(200.); // detector thickness on |layer 1:
[100, 300] nkm

| TS- >Set Thi cknessDet 2(200.); // detector thickness on |ayer 2:
[100, 300] nkm

| TS- >Set Thi cknessChi p1(150.); // chip thickness on |ayer 1:
[150, 300] nkm

I TS- >Set Thi cknessChi p2(150.); // chip thickness on |ayer 2:

[150, 300]
I TS->Set Rai | s(0); /[l 1 —>railsin; 0 —>rails out
I TS- >Set Cool i ngFl ui d(1); /1 1 —> water ; 0 —> freon
| TS- >Set EUCLI D(0) ; /1 no output for the EUCLI D CAD system
Al'i TPC *TPC = new Al i TPCv2("TPC', "Default"); /1 TPC
Al'i TOF *TOF = new Al i TOFV5TO("TOF", "normal TOF"); /1 TOF

32/199

The ALICE Offline Bible

Al'i HWI D *HWI D = new Al'i HWPI Dv1("HWI D', "nor nal

HWPI D") ; /1 HWPID
Ali ZDC *ZDC = new Ali ZzDCv2("zDC', "normal ZDC'); 1/
Ali TRD *TRD = new Al i TRDv1("TRD', "TRD slow simulator"); /1
Al'i FMD *FMD = new Al i FMDV1("FMD', "nornal FMD'); I
Ali MUON *MJUON = new Al i MUONv1("MJON', "default"); /1
MUON
Ali PHOS *PHOS = new Al i PHOSV1(" PHOS", "I HEP"); /1
PHGOS
Ali PMD *PMD = new Ali PMDv1("PMD', "normal PMD"); /1

AliTO *TO = new Al'i TOv1("TO", "TO Detector™); [/ TO

/1 EMCAL

Al'i EMCAL *EMCAL = new Al i EMCALv2(" EMCAL",
"SHI SH 77_TRDL_2X2_FI NAL_110DEG');

Al'i VZERO *VZERO = new Al i VZEROv7("VZERO', "normal VZERO'); I
VZERO

}

3.5.4 Event generation

AliPythia

TPythia

TGenerator AliGenerator
0..1

Figure 4: AliGenerator is the base class, which has the responsibility to generate the

33/199

The ALICE Offline Bible

primary particles of an event. Some realizations of this class do not generate the
particles themselves but delegate the task to an external generator like PYTHIA
through the TGenerator interface.

3.5.4.1Parametrized generation

The event generation based on parametrization can be used to produce signal-free final
states. It avoids the dependences on a specific model, and is efficient and flexible. It
can be used to study the track reconstruction efficiency as a function of the initial
multiplicity and occupation.

AliGenHIJINGparam [**] is an example of an internal AliRoot generator, based on
parametrized pseudorapidity density and transverse momentum distributions of charged
and neutral pions and kaons. The pseudorapidity distribution was obtained from a
HIJING simulation of central Pb—Pb collisions and scaled to a charged-particle
multiplicity of 8000 in the pseudo rapidity interval |n|<0.5. Note that this is about 10%

higher than the corresponding value for a rapidity density with an average dN/dy of
8.000 in the interval |y|<0.5.

The transverse-momentum distribution is parametrized from the measured CDF pion pr-
distribution at Vs =1.8TeV . The corresponding kaon pe-distribution was obtained

from the pion distribution by my-scaling. 197For the details of these parametrizations
see [197].

In many cases, the expected transverse momentum and rapidity distributions of
particles are known. In other cases, the effect of variations in these distributions must
be investigated. In both situations, it is appropriate to use generators that produce
primary particles and their decays sampling from parametrized spectra. To meet the
different physics requirements in a modular way, the parametrizations are stored in
independent function libraries wrapped into classes that can be plugged into the
generator. This is schematically illustrated in Figure 5 where four different generator
libraries can be loaded via the abstract generator interface.

It is customary in heavy-ion event generation to superimpose different signals on an
event in order to tune the reconstruction algorithms. This is possible in AliRoot via the
so-called cocktail generator (see Figure 6). This creates events from user-defined
particle cocktails by choosing as ingredients a list of particle generators.

34/199

The ALICE Offline Bible

AliGenParam) |
AliDecayer

AliGenLib

AliGenGSILib | AliGenMUONLib | AliGenPHOSLib AliGenPMDLibi
| |
1 |

Figure 5: AliGenParam is a realization that generates particles using parameterized p;
and pseudo-rapidity distributions. Instead of coding a fixed number of
parameterizations directly into the class implementations, user defined
parameterization libraries (AliGenLib) can be connected at run time, providing
maximum flexibility.

An example of AliGenParam usage is presented below:

/1 Exanple for J/psi Production from Paranmeterization

/1 using default library (A iMJON i b)

Al'i GenPar am *gener = new Al i GenPar an(ntracks,

Al'i GenMJON i b: : kUpsi | on);

gener - >Set Monent unRange(0, 999); // Wde cut on the Upsilon nonentum
gener - >Set Pt Range(0,999); // Wde cut on Pt

gener - >Set Phi Range(0. , 360.); // Full azimutal range

gener - >Set YRange(2.5,4); // In the acceptance of the MJON arm
gener->Set Cut OnChi I d(1); // Enable cuts on Upsilon decay products
gener - >Set Chi | dThet aRange(2,9); // Theta range for the decay products
gener->SetOrigin(0,0,0); // Vertex position

gener->Set Sigma(0,0,5.3); // Sigmain (X Y,Z) (cm on |IP position
gener - >Set For ceDecay(kDi Muon); // Upsilon->nmu+ nu- decay

gener - >Set Tracki ngFl ag(0); // No particle transport

gener->lnit();

To facilitate the usage of different generators, we have developed an abstract generator
interface called AliGenerator, see Figure 4. The objective is to provide the user with an
easy and coherent way to study a variety of physics signals as well as a full set of tools
for testing and background studies. This interface allows the study of full events, signal
processes and a mixture of both, i.e. cocktail events (see example below).

Several event generators are available via the abstract ROOT class that implements
the generic generator interface, TGenerator. By means of implementations of this
abstract base class, we wrap FORTRAN Monte Carlo codes like PYTHIA, HERWIG,
and HIJING that are thus accessible from the AliRoot classes. In particular the interface
to PYTHIA includes the use of nuclear structure functions of LHAPDF.

35/199

The ALICE Offline Bible

3.5.4.2Pythia6

Pythia is used for simulation of proton-proton interactions and for generation of jets in
case of event merging. An example of minimum bias Pythia events is presented below:

Ali GenPyt hia *gener = new Ali GenPythia(-1);

gener - >Set Monent unmRange(0, 999999) ;

gener - >Set Thet aRange(0., 180.);

gener - >Set YRange(-12, 12);

gener - >Set Pt Range(0, 1000) ;

gener - >Set Process(kPyMd)); // Mn. bias events
gener - >Set Ener gyCMS(14000.); // LHC energy
gener->SetOrigin(0, 0, 0); // Vertex position
gener->Set Sigma(0, 0, 5.3); // Sigmain (X Y,Z) (cm on |IP position
gener->Set Cut VertexZ(1.); [// Truncate at 1 signma
gener - >Set Vert exSnear (kPer Event);// Smear per event
gener - >Set Tr acki ngFl ag(1); // Particle transport
gener->lnit()

3.5.4.3HIJING

HIJING (Heavy-lon Jet Interaction Generator) combines a QCD-inspired model of jet
production [197] using the Lund model [*°] for jet fragmentation. Hard or semi-hard
parton scatterings with transverse momenta of a few GeV are expected to dominate
high-energy heavy-ion collisions. The HIJING model has been developed with special
emphasis on the role of mini jets in p—p, p—A and A-A reactions at collider energies.

Detailed systematic comparisons of HIJING results with a wide range of data
demonstrate a qualitative understanding of the interplay between soft string dynamics
and hard QCD interactions. In particular, HIJING reproduces many inclusive spectra,
two-particle correlations, as well as the observed flavour and multiplicity dependence of
the average transverse momentum.

The Lund FRITIOF [**] model and the Dual Parton Model [*’] (DPM) have guided the
formulation of HIJING for soft nucleus—nucleus reactions at intermediate energies:

VNN ; 20GeV . The hadronic-collision model has been inspired by the successful

implementation of perturbative QCD processes in PYTHIA [197]. Binary scattering with
Glauber geometry for multiple interactions are used to extrapolate to p—A and A-A
collisions.

Two important features of HIJING are jet quenching and nuclear shadowing. Under jet
quenching, we understand the energy loss of partons in nuclear matter. It is responsible
for an increase of the particle multiplicity at central rapidities. Jet quenching is taken into
account by an expected energy loss of partons traversing dense matter. A simple colour
configuration is assumed for the multi-jet system and the Lund fragmentation model is
used for the hadroniation. HIJING does not simulate secondary interactions.

Shadowing describes the modification of the free nucleon parton density in the nucleus.
At low-momentum fractions, x, observed by collisions at the LHC, shadowing results in
a decrease of multiplicity. Parton shadowing is taken into account using a

36/199

The ALICE Offline Bible

parameterization of the modification.

Here is an example of event generation with HIJING:

Ali GenHijing *gener = new Ali GenHijing(-1);
gener - >Set Ener gyCMS(5500.); // center of nass energy
gener - >Set Ref erenceFrane("CVM5"); // reference frane
gener->Set Proj ectile("A", 208, 82); // projectile
gener->Set Target ("A", 208, 82); // projectile

gener - >KeepFul | Event (); // HIJING will keep the full parent child
chain

gener - >Set Jet Quenching(1); // enable jet quenching
gener - >Set Shadowi ng(1); // enabl e shadow ng

gener - >Set DecaysOff (1); // neutral pion and heavy particle decays
swi t ched of f

gener - >Set Spectators(0); // Don't track spectators

gener->Set Sel ect Al (0); // kinematic selection

gener - >Set | npact Par anet er Range(0., 5.); // Inpact paraneter range (fm
gener->lnit()

3.5.4.4Additional universal generators

The following universal generators are available in AliRoot:
» AliGenDPMijet: this is an implementation of the dual parton model [197];
« AliGenlsajet: a Monte Carlo event generator for p—p, P—p, and €" € [];

« AliGenHerwig: Monte Carlo package for simulating Hadron Emission
Reactions With Interfering Gluons [*°].

An example of HERWIG configuration in the Config.C is shown below:

Ali GenHerwi g *gener = new Ali GenHerwi g(-1);
/1 final state kinematic cuts

gener - >Set Monent unRange(0, 7000) ;

gener - >Set Phi Range(0. , 360.);

gener - >Set Thet aRange(0., 180.);

gener - >Set YRange(- 10, 10) ;

gener - >Set Pt Range(0, 7000) ;

/1 vertex position and smearing
gener->SetOrigin(0,0,0); // vertex position
gener - >Set Ver t exSmear (kPer Event) ;

gener->Set Sigma(0,0,5.6); // Sigmain (X Y,Z) (cm on |IP position
/1 Beam noment a

gener - >Set Beamvbnent a(7000, 7000) ;

/| Beans

gener->Set Proj ectile("P");

gener - >Set Target ("P");

/1 Structure function

gener - >Set St r ucFunc(kGRVHO) ;

37/199

The ALICE Offline Bible

/1 Hard scatering

gener - >Set Pt Har dM n(200) ;
gener - >Set Pt RV5(20) ;

/1 Mn bias

gener - >Set Process(8000) ;

3.5.4.5Generators for specific studies

MevSim

MevSim [*°] was developed for the STAR experiment to quickly produce a large number
of A—A collisions for some specific needs; initially for HBT studies and for testing of
reconstruction and analysis software. However, since the user is able to generate
specific signals, it was extended to flow and event-by-event fluctuation analysis.

MevSim generates particle spectra according to a momentum model chosen by the
user. The main input parameters are: types and numbers of generated particles,
momentum-distribution model, reaction-plane and azimuthal-anisotropy coefficients,
multiplicity fluctuation, number of generated events, etc. The momentum models include
factorized p; and rapidity distributions, non-expanding and expanding thermal sources,
arbitrary distributions in y and p, and others. The reaction plane and azimuthal
anisotropy is defined by the Fourier coefficients (maximum of six) including directed and
elliptical flow. Resonance production can also be introduced.

MevSim was originally written in FORTRAN. It was later integrated into AliRoot. A
complete description of the AliRoot implementation of MevSim can be found on the web
page (http://home.cern.ch/~radomski).

GeVSim

GeVSim is based on the MevSim [198] event generator developed for the STAR
experiment.

GeVSim[*'] is a fast and easy-to-use Monte Carlo event generator implemented in
AliRoot. It can provide events of similar type configurable by the user according to the
specific need of a simulation project, in particular, that of flow and event-by-event
fluctuation studies. It was developed to facilitate detector performance studies and for
the test of algorithms. GeVSim can also be used to generate signal-free events to be
processed by afterburners, for example the HBT processor.

198

GeVSim generates a list of particles by randomly sampling a distribution function. The
user explicitly defines the parameters of single-particle spectra and their event-by-event
fluctuations. Single-particle transverse-momentum and rapidity spectra can be either
selected from a menu of four predefined distributions, the same as in MevSim, or
provided by user.

Flow can be easily introduced into simulated events. The parameters of the flow are
defined separately for each particle type and can be either set to a constant value or
parameterized as a function of transverse momentum and rapidity. Two

38/199

The ALICE Offline Bible

parameterizations of elliptic flow based on results obtained by RHIC experiments are
provided.

GeVSim also has extended possibilities for simulating of event-by-event fluctuations.
The model allows fluctuations following an arbitrary analytically defined distribution in
addition to the Gaussian distribution provided by MevSim. It is also possible to
systematically alter a given parameter to scan the parameter space in one run. This
feature is useful when analyzing performance with respect to, for example, multiplicity
or event-plane angle.

The current status and further development of GeVSim code and documentation can be
found in [*].

HBT processor

Correlation functions constructed with the data produced by MEVSIM or any other
event generator are normally flat in the region of small relative momenta. The HBT-
processor afterburner introduces two particle correlations into the set of generated
particles. It shifts the momentum of each particle so that the correlation function of a
selected model is reproduced. The imposed correlation effects, due to Quantum
Statistics (QS) and Coulomb Final State Interactions (FSI), do not affect the single-
particle distributions and multiplicities. The event structures before and after the HBT
processor are identical. Thus, the event reconstruction procedure with and without
correlations is also identical. However, the track reconstruction efficiency, momentum
resolution and particle identification are in general not identical, since correlated
particles have a special topology at small relative velocities. We can thus verify the
influence of various experimental factors on the correlation functions.

The method proposed by L. Ray and G.W. Hoffmann [**] is based on random shifts of
the particle three-momentum within a confined range. After each shift, a comparison is
made with correlation functions resulting from the assumed model of the space—time
distribution and with the single-particle spectra that should remain unchanged. The shift
is kept if the)(2 -test shows better agreement. The process is iterated until satisfactory
agreement is achieved. In order to construct the correlation function, a reference
sample is made by mixing particles from consecutive events. Such a method has an
important impact on the simulations, when at least two events must be processed
simultaneously.

Some specific features of this approach are important for practical use:

» The HBT processor can simultaneously generate correlations of up to two
particle types (e.g. positive and negative pions). Correlations of other particles
can be added subsequently.

« The form of the correlation function has to be parameterized analytically. One
and three dimensional parameterizations are possible.

» A static source is usually assumed. Dynamical effects, related to expansion or
flow, can be simulated in a stepwise form by repeating simulations for different
values of the space—time parameters associated with different kinematic
intervals.

39/199

The ALICE Offline Bible

« Coulomb effects may be introduced by one of three approaches: Gamow factor,
experimentally modified Gamow correction and integrated Coulomb wave
functions for discrete values of the source radii.

» Strong interactions are not implemented.

The detailed description of the HBT processor can be found elsewhere [**].

Flow afterburner

Azimuthal anisotropies, especially elliptic flow, carry unique information about collective
phenomena and consequently are important for the study of heavy-ion collisions.
Additional information can be obtained studying different heavy-ion observables,
especially jets, relative to the event plane. Therefore it is necessary to evaluate the
capability of ALICE to reconstruct the event plane and study elliptic flow.

Since a well understood microscopic description of the flow effect is not available so far,
it cannot be correctly simulated by microscopic event generators. Therefore, in order to
generate events with flow, the user has to use event generators based on macroscopic
models, like GeVSim [198] or an afterburner which can generate flow on top of events
generated by event generators based on the microscopic description of the interaction.
In the AliRoot framework such a flow afterburner is implemented.

The algorithm to apply azimuthal correlation consists in shifting the azimuthal
coordinates of the particles. The transformation is given by [*]:

¢~ 9 =9+0
Ap = Z-ivn (P..y)sinnx (¢ - ¢)

n
where V, (pt,y) is the flow coefficient to be obtained, N is the harmonic number and

@ is the event-plane angle. Note that the algorithm is deterministic and does not
contain any random number generation.

The value of the flow coefficient can either be constant or parameterized as a function
of transverse momentum and rapidity. Two parameterizations of elliptic flow are
provided as in GeVSim.

Ali GenGeVSi nt gener = new Al i GenGeVSi n(0);

mult = 2000; // Mult is the number of charged particles in |eta] < 0.5
vn = 0.01; // Vn

Float _t sigma_eta = 2.75; // Sigma of the CGaussian dN dEta
Float t etamax = 7.00; // Maxinmumeta

/1 Scale frommultiplicity in |eta] < 0.5 to |eta] < |etanmax|
Float_ t mm= mult * (TMath::Erf(etamax/sigma_etal/sqrt(2.)) /

Twvath: : Erf (0.5/sigma_etal/sqrt(2.)));

/1 Scale fromcharged to total nultiplicity
mm *= 1. 587,

40/199

The ALICE Offline Bible

/1 Define particles

/1 78% Pi ons (26% pi +, 26% pi -, 26% pO0) T = 250 MeV

Ali GeVSinParticle *pp =

new Al i GeVSi nParticle(kPi Plus, 1, 0.26 * mm 0.25, sigma_eta) ;
Al'i GeVSinParticle *pm =

new Al i GeVSi nParticle(kPi Mnus, 1, 0.26 * nm O0.25, sigma_eta) ;
Ali GeVSinParticle *p0 =

new Al i GeVSinParticle(kPiO, 1, 0.26 * nm 0.25, signma_eta) ;

/1 12% Kaons (3% KOshort, 3% KOl ong, 3% K+, 3%K-) T = 300 MeV
Ali GeVSinParticle *ks =

new Al i GeVSi nParticl e(kkOShort, 1, 0.03 * nm 0.30, sigma_eta) ;
Ali GeVSinParticle *kl =

new Al i GeVSi nParticl e(kkOLong, 1, 0.03 * nm 0.30, sigma_eta) ;
Ali GeVSinParticle *kp =

new Al i GeVSi nParticle(kKPlus, 1, 0.03 * mm 0.30, sigma_eta) ;
Ali GeVSinParticle *km =

new Al i GeVSi nParticl e(kkKM nus, 1, 0.03 * nm 0.30, sigma_eta) ;

/1 10% Protons / Neutrons (5% Protons, 5% Neutrons) T = 250 MeV
Ali GeVSinParticle *pr =

new Al i GeVSi nParticle(kProton, 1, 0.05 * nm 0.25, signa_eta) ;
Ali GeVSinParticle *ne =

new Al i GeVSi mParticl e(kNeutron, 1, 0.05 * nm O0.25, sigma_eta) ;

/1 Set Elliptic Flow properties

Fl oat _t pTsaturation = 2. ;

pp->Set El | i pti cParam(vn, pTsaturation,0.) ;
pm >Set El | i pticParan(vn, pTsaturation,0.) ;
pO->Set El | i pti cParam(vn, pTsaturation, 0.) ;
pr->Set El | i pticParam(vn, pTsaturation,0.) ;
ne->Set El | i pticParan(vn, pTsaturation,0.) ;
ks->Set El | i pti cParam(vn, pTsaturation,0.) ;
kl ->Set El | i pticParan(vn, pTsaturation,0.) ;
kp->Set El | i pti cParan(vn, pTsaturation,0.) ;
km >Set El | i pti cParan(vn, pTsaturation,0.) ;

/1 Set Direct Flow properties

pp->Set Di r ect edPar am(vn, 1. 0,0.) ;
pm >Set Di rect edParan{vn, 1.0,0.) ;
pO->Set Di rect edPar am(vn, 1.0, 0.) ;
pr->Set Di rect edParam(vn, 1. 0,0.) ;
ne->Set Di rect edParan{vn, 1.0,0.) ;
ks->Set Di rect edPar am(vn, 1. 0,0.) ;
kl ->Set Di rect edParan{vn, 1.0,0.) ;
kp->Set Di rect edParan{vn, 1.0,0.) ;
km >Set Di r ect edPar am(vn, 1. 0,0.) ;

41/199

The ALICE Offline Bible

/1 Add particles to the |ist

gener - >AddPar ti cl eType(pp) ;
gener - >AddParti cl eType(pm ;
gener - >AddPar ti cl eType(p0) ;
gener - >AddParti cl eType(pr) ;
gener - >AddParti cl eType(ne) ;
gener - >AddParti cl eType(ks) ;
gener - >AddParticl eType(kl) ;
gener - >AddParti cl eType(kp) ;
gener - >AddParticl eType(km ;

/1 Random Ev. Pl ane
TF1 *rpa = new TF1("gevsi nPsi Rndm', " 1", 0, 360);

gener - >Set Pt Range(0., 9.) ; // Used for bin size in nunerical
integration

gener - >Set Phi Range(0, 360);

gener->SetOrigin(0, 0, 0); // vertex position

gener->Set Sigma(0, 0, 5.3); // Sigma in (X Y,Z) (cm on IP position
gener - >Set Cut VertexZ(1.); [// Truncate at 1 sigma

gener - >Set Vert exSnear (kPer Event) ;

gener - >Set Tr acki ngFl ag(1) ;

gener->lnit();

Generator for e’e’ pairs in Pb—Pb collisions

In addition to strong interactions of heavy ions in central and peripheral collisions, ultra-
peripheral collisions of ions give rise to coherent, mainly electromagnetic interactions
among which the dominant process is the (multiple) e*e™ -pair production [*°]:

AA - AA+ n(e+e‘)

where N is the pair multiplicity. Most electron—positron pairs are produced into the very
forward direction escaping the experiment. However, for Pb—Pb collisions at the LHC
the cross-section of this process, about 230 kb, is enormous. A sizable fraction of
pairs produced with large-momentum transfer can contribute to the hit rate in the
forward detectors increasing the occupancy or trigger rate. In order to study this effect,
an event generator for e'e -pair production has been implemented in the AliRoot
framework [*]. The class TEpEmGen is a realisation of the TGenerator interface for
external generators and wraps the FORTRAN code used to calculate the differential
cross-section. AliGenEpEmv1 derives from AliGenerator and uses the external
generator to put the pairs on the AliRoot particle stack.

42/199

The ALICE Offline Bible

3.5.4.6Combination of generators: AliGenCocktail

Different generators can be combined together so that each one adds the particles it
has generated to the event stack via the AliGenCocktail class.

AliGenerator AliGenCocktailEntry

AliGenCocktail

Figure 6: The AliGenCocktail generator is a realization of AliGenerator which does
not generate particles itself but delegates this task to a list of objects of type
AliGenerator that can be connected as entries (AliGenCocktailEntry) at run-time. In
this way, different physics channels can be combined in one event.

Here is an example of cocktail, used for studies in the TRD detector:

/1 The cocktail generator
Al'i GenCocktail *gener = new Ali GenCocktail ();

/1 Phi neson (10 particles)
Al'i GenPar am *phi =

new Al i GenPar an(10, new Al i GenMJONI i b(), Al i GenMJONl i b: : kPhi , " Vogt
PbPb") ;

phi - >Set Pt Range(0, 100);
phi - >Set YRange(-1., +1.);
phi - >Set For ceDecay(kDi El ectron);

/1 QOrega neson (10 particles)
Al i GenPar am *onega =

new Al i GenPar an(10, new Al'i GenMJONI'i b(), Al i GenMJONl i b: : kOnega, " Vogt
PbPb") ;

onega- >Set Pt Range(0, 100);
onega- >Set YRange(-1., +1.);
onega- >Set For ceDecay(kDi El ectron);

/1 J/ psi

Al'i GenParam *j psi = new Al i GenParam(10, new Al i GenMJONl i b(),
Al'i GenMJON i b: : kdpsi Fami |y, "Vogt PbPb");

j psi - >Set Pt Range(0, 100);

j psi - >Set YRange(-1., +1.);

j psi - >Set For ceDecay(kDi El ectron);

43/199

The ALICE Offline Bible

/1 Upsilon fanily

Al'i GenParam *ups = new Al i GenPar an(10, new Al i GenMJONl i b(),
Ali GenMJON i b: : kUpsi | onFami |y, "Vogt PbPb");

ups- >Set Pt Range(0, 100);

ups->Set YRange(-1., +1.);

ups- >Set For ceDecay(kDi El ectron);

/1 Open charm particles
Al'i GenPar am *charm = new Al i GenPar an(10, new Al i GenMJONl i b(),
Ali GenMJONl i b: : kCharm "central ");
char m >Set Pt Range(0, 100);
charm >Set YRange(-1.5, +1.5);
char m >Set For ceDecay(kSemi El ectronic);

/] Beauty particles: seni-electronic decays

Ali GenPar am *beauty = new Al i GenPar an{10, new Al i GenMJON i b(),
Al'i GenMJONl i b: : kBeauty, "central ");

beaut y- >Set Pt Range(0, 100);

beaut y- >Set YRange(-1.5, +1.5);

beaut y- >Set For ceDecay(kSem El ectronic);

/1 Beauty particles to J/psi ee

Ali GenPar am *beautyJ = new Al i GenParan{10, new Al i GenMJON i b(),
Al'i GenMJON i b: : kBeauty, "central ");

beaut yJ- >Set Pt Range(0, 100);

beaut yJ- >Set YRange(-1.5, +1.5);

beaut yJ- >Set For ceDecay(kBJpsi Di El ectron);

/1 Adding all the components of the cocktail

gener - >AddCGener at or (phi, "Phi ", 1);

gener - >AddGener at or (onega, "Orega”, 1) ;

gener - >AddCener at or (j psi,"J/psi", 1);

gener - >AddGener at or (ups, "Upsi l on", 1);

gener - >AddGener at or (charm " Charni', 1) ;

gener - >AddGener at or (beauty, "Beauty", 1) ;

gener - >AddGener at or (beautyJ, "J/ Psi from Beauty", 1);

/] Settings, common for all conponents

gener->SetOrigin(0, 0, 0); // vertex position

gener->Set Sigma(0, 0, 5.3); // Sigma in (X Y,Z) (cm on IP position
gener - >Set Cut VertexZ(1.); [// Truncate at 1 sigma

gener - >Set Vert exSnear (kPer Event) ;

gener - >Set Tr acki ngFl ag(1) ;

gener->lnit();

44/199

The ALICE Offline Bible

3.5.5 Particle transport

3.5.5.1TGeo essential information

A detailed description of the ROOT geometry package is available in the ROOT User
Guide [**]. Several examples can be found in $ROOTSYS/tutorials, among them
assembly.C, csgdemo.C, geodemo.C, nucleus.C, rootgeom.C, etc. Here we show a
simple usage for export/import of the ALICE geometry and for check for overlaps and

extrusions:

al i root

root [O0]
root [1]
root [2]
al i root

root [O0]
root [1]
root [2]
root [3]

gAlice->Init()
gCGeoManager - >Export ("geonetry. root")
-q

TGeoManager: : | nport (" geometry.root")
gCGeoManager - >CheckOver | aps()
gCGeoManager - >Pri nt Over | aps()

new TBrowser

Now you can navigate in Geonetry->II1egal overlaps
and draw each overlap (double click on it)

3.5.5.2Visualization

Below we show an example of VZERO visualization using the ROOT geometry

package:

al i root
root [O0]
root [1]
root [2]
root [3]

gAlice->Init()

TCGeoVol ume *top = gGeoManager - >Cet Mast er Vol une()

Int_t nd = top->Get Ndaught ers()

for (Int_t i=0; i<nd; i++) top->CetNode(i)->GCetVol unme()-

>l nvi si bl eAll ()

root [4]
root [5]
root [6]
root [7]
root [8]
root [9]

root [10]

TGeoVol une *vOri = gGeoManager - >Get Vol ume(" VORI ")
TGeoVol umre *vO0l e = gGeoManager - >Get Vol une(" VOLE")
vOri->SetVisibility(kTRUE);
vOri - >Vi si bl eDaught er s(KTRUE) ;
vOl e->Set Visi bility(kTRUE);
vOI e- >Vi si bl eDaught er s(KTRUE) ;

t op->Draw() ;

3.5.5.3Particle decays

We use Pythia to generate one-particle decays during the transport. The default decay

channels can be seen in the following way:

al i root
root [O0]

AliPythia * py = AliPythia::Instance()

45/199

The ALICE Offline Bible

root [1] py->Pylist(12); >> decay.list

The file decay.list will contain the list of particles decays available in Pythia. Now, if we
want to force the decay N S prT |, the following lines should be included in the
Config.C before we register the decayer:

Ali Pythia * py = AliPythia::Instance();
py- >Set MDVE(1059, 1, 0) ;
py- >Set MDVE(1060, 1, 0) ;
py- >Set MDME(1061, 1, 0);

where 1059,1060 and 1061 are the indexes of the decay channel (from decay.list
above) we want to switch off.

3.5.5.4Examples

Fast simulation

This example is taken from the macro $ALICE_ROOT/FASTSIM/fastGen.C. It shows
how one can create a kinematics tree which later can be used as input for the particle
transport. A simple selection of events with high multiplicity is implemented.

void fastGen(Int_t nev = 1, char* filenanme = "galice.root")
{
/1 Run | oader

Ali RunLoader* rl = Ali RunLoader:: Open
("galice.root","FASTRUN', "recreate");

rl->Set Conpr essi onLevel (2);

rl ->Set Nunber O Event sPer Fi | e(nev);
rl->LoadKi nenati cs(" RECREATE") ;
rl->MakeTree("E");

gAl i ce- >Set RunLoader (rl);

/1l Create stack
rl->MakeSt ack();
Ali St ack* stack =rl->Stack();

/'l Header
Al'i Header* header = rl->Cet Header ();

/1l Generator

Al'i GenPyt hia *gener = new Ali GenPythia(-1);
gener - >Set Monent unRange(0, 999999) ;

gener - >Set Process(kPyM) ;

gener - >Set Ener gyCMS(14000.) ;

gener - >Set Thet aRange(45, 135);

gener - >Set Pt Range(0., 1000.);

46/199

The ALICE Offline Bible

gener - >Set St ack(st ack) ;

gener->lnit();

rl->CdGAFi | e();

I

/1 Event Loop

I

for (Int_t iev =0; iev < nev; iev++) {

/1 Initialize event
header - >Reset (0, i ev);

rl ->Set Event Nunber (i ev) ;
st ack->Reset () ;
rl->MakeTree("K");

/1 Generate event
Int_t nprim= O;
Int_t ntrial = O;

Int t minnult = 1000;

whil e(nprimm nnul t) {
/] Selection of events with multiplicity
/1 bigger than "m nmult"
st ack->Reset () ;
gener - >Cenerate();
ntrial ++;
nprim = stack->Get Nprimary();

}
cout << "Nunmber of particles " << nprim << endl;
cout << "Nunber of trials " << ntrial << endl;

/1 Finish event
header - >Set Npri mary(st ack->CGet Nprinmary());
header - >Set Nt r ack(st ack->Get Nt rack());

/1 /0

st ack->Fi ni shEvent () ;

header - >Set St ack(st ack) ;
rl->TreeE()->Fill();
ri->WiteKinemati cs(" OVERWRI TE") ;

} I/ event |oop

I Term nation
/'l Generator

gener - >Fi ni shRun() ;

/1 Stack

st ack- >Fi ni shRun();

Il Wite file

ri->WiteHeader (" OVERWRI TE") ;
gener->Wite();

ri->Wite();

47/199

The ALICE Offline Bible

Reading of kinematics tree as input for the particle transport

We suppose that the macro fastGen.C above has been used to generate the
corresponding sent of files: galice.root and Kinematics.root, and that they are stored in
a separate subdirectory, for example kine. Then the following code in Config.C will read
the set of files and put them in the stack for transport:

Ali GenExtFile *gener = new Ali GenExtFile(-1);

gener - >Set Monent unRange(0, 14000) ;

gener - >Set Phi Range(0., 360.);

gener - >Set Thet aRange(45, 135);

gener - >Set YRange(- 10, 10);

gener->SetOrigin(0, 0, 0); //vertex position

gener->Set Sigma(0, 0, 5.3); //Sigma in (X Y,Z) (cn) on IP position

Al i GenReader TreeK * reader = new Al i GenReader TreeK();
reader->Set Fi|l eNane("../galice.root");

gener - >Set Reader (r eader) ;
gener - >Set Tr acki ngFl ag(1);

gener->lnit();

Usage of different generators

Numerous examples are available in $ALICE_ROOT/macros/Config_gener.C. The
corresponding part can be extracted and placed in the respective Config.C file.

3.6Reconstruction

In this section we describe the ALICE reconstruction framework and software.

3.6.1 Reconstruction Framework

This chapter focuses on the reconstruction framework from the (detector) software
developers’ point of view.

If not otherwise specified, we refer to the “global ALICE coordinate system” [*]. It is a

right-handed coordinate system with the z-axis coinciding with the beam-pipe axis
pointing away from the muon arm, the y-axis going upward, and its origin defined by the
intersection point of the z-axis and the central membrane-plane of TPC.

In the following, we briefly summarize the main conceptual terms of the reconstruction
framework (see also section 3.2):

« Digit: This is a digitized signal (ADC count) obtained by a sensitive pad of a

48/199

The ALICE Offline Bible

detector at a certain time.

« Cluster: This is a set of adjacent (in space and/or in time) digits that were
presumably generated by the same particle crossing the sensitive element of a
detector.

« Space point (reconstructed): This is the estimation of the position where a
particle crossed the sensitive element of a detector (often, this is done by
calculating the centre of gravity of the “cluster').

» Track (reconstructed): This is a set of five parameters (such as the curvature
and the angles with respect to the coordinate axes) of the particle's trajectory
together with the corresponding covariance matrix estimated at a given point in
space.

The input to the reconstruction framework are digits in ROOT tree format or raw data
format. First, a local reconstruction of clusters is performed in each detector. Then
vertexes and tracks are reconstructed and the particle identification is carried on. The
output of the reconstruction is the Event Summary Data (ESD). The AliReconstruction
class provides a simple user interface to the reconstruction framework which is
explained in the source code and.

o Simulation | Reconstruction

= i

©

(&) ‘ AllReconstructor ‘

g =)
¢ | AliTracker]

. oo (AlTracker|

E H

@

=t

@

a

w©

@

o

Online Offline
Figure 7: Reconstruction framework

Requirements and Guidelines

The development of the reconstruction framework has been guided by the following
requirements and code of practice:

» The prime goal of the reconstruction is to provide the data that is needed for a
physics analysis.

» The reconstruction should be aimed at high efficiency, purity and resolution.

e The user should have an easy-to-use interface to extract the required
information from the ESD.

49/199

The ALICE Offline Bible

* The reconstruction code should be efficient and maintainable.

» The reconstruction should be as flexible as possible. It should be possible to do
the reconstruction in one detector even if other detectors are not operational.
To achieve such a flexibility each detector module should be able to

® find tracks starting from seeds provided by another detector (external
seeding),

® find tracks without using information from other detectors (internal
seeding),

® find tracks from external seeds and add tracks from internal seeds

® and propagate tracks through the detector using the already assigned
clusters in inward and outward direction.

* Where it is appropriate, common (base) classes should be used in the different
reconstruction modules.

< Interdependencies between the reconstruction modules should be minimized. If
possible the exchange of information between detectors should be done via a
common track class.

e The chain of reconstruction program(s) should be callable and steerable in an
easy way.

» There should be no assumptions on the structure or names of files or on the
number or order of events.

« Each class, data member and method should have a correct, precise and
helpful html documentation.

AliReconstructor

The base class AliReconstructor defines the interface from the steering class
AliReconstruction to the detector-specific reconstruction code. For each detector,
there is a derived reconstructor class. The user can set options for each reconstructor
as string parameter that is accessible inside the reconstructor via the method
GetOption.

The detector specific reconstructors are created via plug-ins. Therefore they must have
a default constructor. If no plug-in handler is defined by the user (in .rootrc), it is
assumed that the name of the reconstructor for detector <DET> s
Ali<DET>Reconstructor and that it is located in the library lib<DET>rec.so (or
lib<DET>.s0 in case the libraries of the detector have not been split and are all bundled
in a single one).

Input Data

If the input data is provided in format of ROOT trees, either the loaders or directly the
trees are used to access the digits. In case of raw data input, the digits are accessed
via a raw reader.

If a galice.root file exists, the run loader will be retrieved from it. Otherwise the run
loader and the headers will be created from the raw data. The reconstruction cannot

50/199

The ALICE Offline Bible

work if there is no galice.root file and no raw data input.
Output Data

The clusters (rec. points) are considered intermediate output and are stored in ROOT
trees handled by the loaders. The final output of the reconstruction is a tree with objects
of type AIIESD stored in the file AlIESDs.root. This Event Summary Data (ESD)
contains lists of reconstructed tracks/particles and global event properties. The detailed
description of the ESD can be found in section ESD.

Local Reconstruction (Clusterization)

The first step of the reconstruction is the so-called “local reconstruction”. It is executed
for each detector separately and without exchanging information with other detectors.
Usually the clusterization is done in this step.

The local reconstruction is invoked via the method Reconstruct of the reconstructor
object. Each detector reconstructor runs the local reconstruction for all events. The local
reconstruction method is only called if the method HasLocalReconstruction of the
reconstructor returns KTRUE.

Instead of running the local reconstruction directly on raw data, it is possible to first
convert the raw data digits into a digits tree and then to call the Reconstruct method
with a tree as input parameter. This conversion is done by the method ConvertDigits.
The reconstructor has to announce that it can convert the raw data digits by returning
kTRUE in the method HasDigitConversion.

Vertexing

The current reconstruction of the primary-vertex position in ALICE is done using the
information provided by the silicon pixel detectors, which constitute the two innermost
layers of the ITS.

The algorithm starts by looking at the distribution of the z-coordinates of the
reconstructed space points in the first pixel layers. At a vertex having z-coordinate
Zne=0, the distribution is symmetric and its centroid (z..) is very close to the nominal
vertex position. When the primary vertex is moved along the z-axis, an increasing
fraction of hits will be lost and the centroid of the distribution no longer gives the primary
vertex position. However, for primary vertex locations not too far from zy,.=0 (up to
about 12 cm), the centroid of the distribution is still correlated to the true vertex position.
The saturation effect at large zy,. values of the vertex position zy,e=12—-15cm) is,
however, not critical, since this procedure is only meant to find a rough vertex position,
in order to introduce some cut along z.

To find the final vertex position, the correlation between the points z;, z, in the two
layers was considered. More details and performance studies are available in [*"].

A vertexer object derived from AliVertexer reconstructs the primary vertex. After the
local reconstruction has been done for all detectors, the vertexer method
FindVertexForCurrentEvent is called for each event. It returns a pointer to a vertex
object of type AlIESDVertex.

The vertexer object is created by the method CreateVertexer of the reconstructor. So

51/199

The ALICE Offline Bible

far, only the ITS is taken into account to determine the primary vertex (AlilTSVertexerZ
class).

The precision of the primary vertex reconstruction in the bending plane required for the
reconstruction of D and B mesons in p—p events can be achieved only after the tracking
is done. The method is implemented in AlilTSVertexerTracks. It is called as a second
estimation of the primary vertex. The details of the algorithm can be found in Appendix
VertexerTracks.

Combined Track Reconstruction

The combined track reconstruction tries to accumulate the information from different
detectors in order to optimize the track reconstruction performance. The result of this is
stored in the combined track objects. The AIIESDTrack class also provides the
possibility to exchange information between detectors without introducing dependencies
between the reconstruction modules. This is achieved by using just integer indexes
pointing to the specific track objects, which allows the retrieval of the information as
needed. The list of combined tracks can be kept in memory and passed from one
reconstruction module to another. The storage of the combined tracks should be done
in the standard way.

The classes responsible for the reconstruction of tracks are derived from AliTracker.
They are created by the method CreateTracker of the reconstructors. The
reconstructed position of the primary vertex is made available to them via the method
SetVertex. Before the track reconstruction in a detector starts, clusters are loaded from
the clusters tree by means of the method LoadClusters. After the track reconstruction,
the clusters are unloaded by the method UnloadClusters.

The track reconstruction (in the barrel part) is done in three passes. The first pass
consists of a track finding and fitting in inward direction in TPC and then in the ITS. The
virtual method Clusters2Tracks (belonging to the class AliTracker) provides the
interface to this pass. The method for the next pass is PropagateBack. It does the track
reconstruction in outward direction and is invoked for all detectors starting with the ITS.
The last pass is the track refit in inward direction in order to get the track parameters at
the vertex. The corresponding method Refitinward is called for TRD, TPC and ITS. All
three track-reconstruction methods have an AlIESD object as argument that is used to
exchange track information between detectors without introducing code dependencies
between the detector trackers.

Depending on the way the information is used, the tracking methods can be divided into
two large groups: global methods and local methods. Each group has advantages and
disadvantages.

With the global methods, all track measurements are treated simultaneously and the
decision to include or exclude a measurement is taken when all the information about
the track is known. Typical algorithms belonging to this class are combinatorial
methods, Hough transform, templates, and conformal mappings. The advantages are
the stability with respect to noise and mis-measurements, and the possibility to operate
directly on the raw data. On the other hand, these methods require a precise global
track model. Sometimes, such a track model is unknown or does not even exist

52/199

The ALICE Offline Bible

because of stochastic processes (energy losses, multiple scattering), non-uniformity of
the magnetic field etc. In ALICE, global tracking methods are being extensively used in
the High-Level Trigger (HLT) software. There, we are mostly interested in the
reconstruction of the high-momentum tracks, the required precision is not crucial, but
the speed of the calculations is of great importance.

Local methods do not require the knowledge of the global track model. The track
parameters are always estimated “locally” at a given point in space. The decision to
accept or reject a measurement is made using either the local information or the
information coming from the previous “history' of this track. With these methods, all the
local track peculiarities (stochastic physics processes, magnetic fields, detector
geometry) can naturally be accounted for. Unfortunately, local methods rely on
sophisticated space point reconstruction algorithms (including unfolding of overlapped
clusters). They are sensitive to noise, wrong or displaced measurements and the
precision of space point error parameterization. The most advanced kind of local track-
finding methods is Kalman filtering which was introduced by P. Billoir in 1983 [*'].

When applied to the track reconstruction problem, the Kalman-filter approach shows
many attractive properties:

* Itis a method for simultaneous track recognition and fitting.

« There is a possibility to reject incorrect space points “on the fly” during a single
tracking pass. These incorrect points can appear as a consequence of the
imperfection of the cluster finder or they may appear due to noise or they may
be points from other tracks accidentally captured in the list of points to be
associated with the track under consideration. In the other tracking methods,
one usually needs an additional fitting pass to get rid of incorrectly assigned
points.

» In case of substantial multiple scattering, track measurements are correlated
and therefore large matrices (of the size of the number of measured points)
need to be inverted during a global fit. In the Kalman-filter procedure we only
have to manipulate up to 5 x 5 matrices (although as many times as we have
measured space points), which is much faster.

* One can handle multiple scattering and energy losses in a simpler way than in
the case of global methods. At each step, the material budget can be calculated
and the mean correction computed accordingly.

* Itis a natural way to find the extrapolation of a track from one detector to
another (for example from the TPC to the ITS or to the TRD).

In ALICE we require good track-finding efficiency and reconstruction precision for track
down to p=100 MeV/c. Some of the ALICE tracking detectors (ITS, TRD) have a
significant material budget. Under such conditions, one can not neglect the energy
losses or the multiple scattering in the reconstruction. There are also rather big dead
zones between the tracking detectors, which complicate finding the continuation of the
same track. For all these reasons, it is the Kalman-filtering approach that has been our
choice for the offline reconstruction since 1994.

53/199

The ALICE Offline Bible

3.6.1.1General tracking strategy

All parts of the reconstruction software for the ALICE central tracking detectors (the ITS,
TPC and the TRD) follow the same convention for the coordinate system used. All
clusters and tracks are always expressed in some local coordinate system related to a
given sub-detector (TPC sector, ITS module etc). This local coordinate system is
defined as follows:

» ltis aright handed-Cartesian coordinate system;

* Its origin and the z-axis coincide with that of the global ALICE coordinate
system;

* The x-axis is perpendicular to the sub-detector's “sensitive plane” (TPC pad
row, ITS ladder etc).

Such a choice reflects the symmetry of the ALICE set-up and therefore simplifies the
reconstruction equations. It also enables the fastest possible transformations from a
local coordinate system to the global one and back again, since these transformations
become single rotations around the z-axis.

The reconstruction begins with cluster finding in all of the ALICE central detectors (ITS,
TPC, TRD, TOF, HMPID and PHOS). Using the clusters reconstructed at the two pixel
layers of the ITS, the position of the primary vertex is estimated and the track finding
starts. As described later, cluster-finding, as well as track-finding procedures performed
in the detectors have some different detector-specific features. Moreover, within a given
detector, on account of high occupancy and a big number of overlapping clusters,
cluster finding and track finding are not completely independent: the number and
positions of the clusters are completely determined only at the track-finding step.

The general tracking strategy is the following: We start from our best tracker device, i.e.
the TPC, and there from the outer radius where the track density is minimal. First, the
track candidates (“seeds”) are found. Because of the small number of clusters assigned
to a seed, the precision of its parameters is not sufficient to safely extrapolate it
outwards to the other detectors. Instead, the tracking stays within the TPC and
proceeds towards the smaller TPC radii. Whenever possible, new clusters are
associated with a track candidate at each step of the Kalman filter, if they are within a
given distance from the track prolongation, and the track parameters are more and
more refined. When all of the seeds are extrapolated to the inner limit of the TPC, we
proceed with the ITS. The ITS tracker tries to prolong the TPC tracks as close as
possible to the primary vertex. On the way to the primary vertex, the tracks are
assigned additional, precisely reconstructed ITS clusters, which also improves the
estimation of the track parameters.

After all the track candidates from the TPC have been assigned their clusters in the ITS,
a special ITS stand-alone tracking procedure is applied to the rest of the ITS clusters.
This procedure tries to recover those tracks that were not found in the TPC because of
the pt cut-off, dead zones between the TPC sectors, or decays.

At this point, the tracking is restarted from the vertex back to the outer layer of the ITS
and then continued towards the outer wall of the TPC. For the track that was labelled by

54/199

The ALICE Offline Bible

the ITS tracker as potentially primary, several particle-mass-dependent, time-of-flight
hypotheses are calculated. These hypotheses are then used for the particle
identification (PID) within the TOF detector. Once the outer radius of the TPC is
reached, the precision of the estimated track parameters is sufficient to extrapolate the
tracks to the TRD, TOF, HMPID and PHOS detectors. Tracking in the TRD is done in a
similar way to that in the TPC. Tracks are followed till the outer wall of the TRD and the
assigned clusters improve the momentum resolution further. Next, the tracks are
extrapolated to the TOF, HMPID and PHOS, where they acquire the PID information.
Finally, all the tracks are refitted with the Kalman filter backwards to the primary vertex
(or to the innermost possible radius, in the case of the secondary tracks). This gives the
most precise information about the track parameters at the point where the track
appeared.

The tracks that passed the final refit towards the primary vertex are used for the
secondary vertex (V°, cascade, kink) reconstruction. There is also an option to
reconstruct the secondary vertexes “on the fly” during the tracking itself. The potential
advantage of such a possibility is that the tracks coming from a secondary vertex
candidate are not extrapolated beyond the vertex, thus minimizing the risk of picking up
a wrong track prolongation. This option is currently under investigation.

The reconstructed tracks (together with the PID information), kink, V® and cascade
particle decays are then stored in the Event Summary Data (ESD).

More details about the reconstruction algorithms can be found in Chapter 5 of the
ALICE Physics Performance Report [198].

Filling of ESD

After the tracks have been reconstructed and stored in the AIIESD object, further
information is added to the ESD. For each detector the method FillESD of the
reconstructor is called. Inside this method e.g. V°s are reconstructed or particles are
identified (PID). For the PID, a Bayesian approach is used (see Appendix 8.2. The
constants and some functions that are used for the PID are defined in the class AliPID.

Monitoring of Performance

For the monitoring of the track reconstruction performance, the classes
AliTrackReference are used. Objects of the second type of class are created during
the reconstruction at the same locations as the AliTrackReference objects. So the
reconstructed tracks can be easily compared with the simulated particles. This allows
studying and monitoring the performance of the track reconstruction in detail. The
creation of the objects used for the comparison should not interfere with the
reconstruction algorithm and can be switched on or off.

Several “comparison” macros permit to monitor the efficiency and the resolution of the
tracking. Here is a typical usage (the simulation and the reconstruction have been done
in advance):

al i root
root [0] gSystem >Setl ncl udePat h("-1$ROOTSYS/ i ncl ude \
-1 $ALI CE_ROOT/ i ncl ude \

55/199

The ALICE Offline Bible

-1 $ALI CE_ROOT/ TPC \

-1 $ALI CE_ROOT/ I TS \

-1 $ALI CE_ROOT/ TOF")

root [1] .L $ALI CE_ROOT/ TPC/ Al i TPCConpari son. C++
root [2] .L $ALICE ROOT/I TS/ Al'i | TSConpari sonV2. C++
root [3] .L $ALI CE_ROOT/ TOF/ Al i TOFConpari son. C++
root [4] Ali TPCConparison()

root [5] Alil TSConparisonV2()

root [6] Ali TOFConparison()

Another macro can be used to provide a preliminary estimate of the combined
acceptance: STEER/CheckESD.C.

Classes

The following classes are used in the reconstruction:

AliTrackReference is used to store the position and the momentum of a
simulated particle at given locations of interest (e.g. when the particle enters or
exits a detector or it decays). It is used mainly for debugging and tuning of the
tracking.

AliExternalTrackParams describes the status of a track at a given point. It
contains the track parameters and its covariance matrix. This parameterization
is used to exchange tracks between the detectors. A set of functions returning
the position and the momentum of tracks in the global coordinate system as
well as the track impact parameters are implemented. There is the option to
propagate the track to a given radius PropagateTo and Propagate.

AliKalmanTrack (and derived classes) are used to find and fit tracks with the
Kalman approach. The AliKalmanTrack defines the interfaces and implements
some common functionality. The derived classes know about the clusters
assigned to the track. They also update the information in an AliIESDtrack. An
AliExternalTrackParameters object can represent the current status of the
track during the track reconstruction. The history of the track during
reconstruction can be stored in a list of AliExternalTrackParameters objects.
The AliKalmanTrack defines the methods:

® Double_t GetDCA(...) Returns the distance of closest approach
between this track and the track passed as the argument.

® Double_t MeanMaterialBudget(...) Calculate the mean material
budget and material properties between two points.

AliTracker and subclasses: The AliTracker is the base class for all the
trackers in the different detectors. It defines the interface required to find and
propagate tracks. The actual implementation is done in the derived classes.

AliIESDTrack combines the information about a track from different detectors.
It contains the current status of the track (AliExternalTrackParameters) and it
has (non-persistent) pointers to the individual AliKalmanTrack objects from
each detector that contribute to the track. It contains as well detector specific

56/199

The ALICE Offline Bible

quantities like the number or bit pattern of assigned clusters, dE/dx)(2 , etc..
and it can calculate a conditional probability for a given mixture of particle
species following the Bayesian approach. It also defines a track label pointing
to the corresponding simulated particle in case of Monte Carlo. The combined
track objects are the basis for a physics analysis.

Example

The example below shows reconstruction with non-uniform magnetic field (the
simulation is also done with non-uniform magnetic field by adding the following line in
the Config.C: field » SetL3ConstField(1)). Only

the barrel detectors are reconstructed, a specific TOF reconstruction

has been requested, and the RAW data have been used:

void rec() {
Al i Reconstruction reco;

reco. Set RunReconstruction("I TS TPC TRD TOF");
reco. Set Uni f or nFi el dTr acki ng(0);
reco. Setlnput("raw. root");

reco. Run();

3.6.2 Event summary data

The classes that are needed to process and analyze the ESD are packaged in a
standalone library (ibESD.so) which can be used independently from the AliRoot
framework. Inside each ESD object, the data is stored in polymorphic containers filled
with reconstructed tracks, neutral particles, etc. The main class is AlIESD, which
contains all the information needed during the physics analysis:

» fields to identify the event, such as event number, run number, time stamp, type
of event, trigger type (mask), trigger cluster (mask), version of reconstruction,
etc.;

» reconstructed ZDC energies and number of participants;

e primary vertex information: vertex z-position estimated by the TO, primary
vertex estimated by the SPD, primary vertex estimated using ESD tracks;

e tracklet multiplicity;

« interaction time estimated by the TO together with additional time and amplitude
information from TO;

e array of ESD tracks;

e arrays of HLT tracks, both from the conformal mapping and from the Hough
transform reconstruction;

57/199

The ALICE Offline Bible

e array of MUON tracks;

e array of PMD tracks;

« array of TRD ESD tracks (triggered);

» arrays of reconstructed V° vertexes, cascade decays and kinks;
» array of calorimeter clusters for PHOS/EMCAL;

» indexes of the information from PHOS and EMCAL detectors in the array
above.

3.7Analysis

3.7.1 Introduction

The analysis of experimental data is the final stage of event processing, and it is usually
repeated many times. Analysis is a very diverse activity, where the goals of each
particular analysis pass may differ significantly.

The ALICE detector [197] is optimized for the reconstruction and analysis of heavy-ion
collisions. In addition, ALICE has a broad physics programme devoted to p—p and p-A
interactions.

The Physics Board coordinates data analysis via the Physics Working Groups (PWGs).
At present, the following PWG have started their activity:

» PWGO first physics;
« PWGH detector performance;

PWG2 global event characteristics: particle multiplicity, centrality, energy
density, nuclear stopping;
soft physics: chemical composition (particle and resonance production, particle
ratios and spectra, strangeness enhancement), reaction dynamics (transverse
and elliptic flow, HBT correlations, event-by-event dynamical fluctuations);

PWGS heavy flavors: quarkonia, open charm and beauty production.
PWG4 hard probes: jets, direct photons;

Each PWG has corresponding module in AliRoot (PWGO0 — PWG4). CVS administrators
manage the code.

The p—p and p—A programme will provide, on the one hand, reference points for
comparison with heavy ions. On the other hand, ALICE will also pursue genuine and
detailed p—p studies. Some quantities, in particular the global characteristics of
interactions, will be measured during the first days of running, exploiting the low-
momentum measurement and particle identification capabilities of ALICE.

The ALICE computing framework is described in details in the Computing Technical
Design Report [197]. This section is based on Chapter 6 of the document.

58/199

The ALICE Offline Bible

The analysis activity

We distinguish two main types of analysis: scheduled analysis and chaotic analysis.
They differ in their data access pattern, in the storage and registration of the results,
and in the frequency of changes in the analysis code (more details are available below).

In the ALICE computing model, the analysis starts from the Event Summary Data
(ESD). These are produced during the reconstruction step and contain all the
information for analysis. The size of the ESD is about one order of magnitude lower
than the corresponding raw data. The analysis tasks produce Analysis Object Data
(AOD), specific to a given set of physics objectives. Further passes for the specific
analysis activity can be performed on the AODs, until the selection parameter or
algorithms are changed.

A typical data analysis task usually requires processing of selected sets of events. The
selection is based on the event topology and characteristics, and is done by querying
the tag database. The tags represent physics quantities which characterize each run
and event, and permit fast selection. They are created after the reconstruction and
contain also the unique identifier of the ESD file. A typical query, when translated into
natural language, could look like “Give me all the events with impact parameter in
<range> containing jet candidates with energy larger than <threshold>". This results in a
list of events and file identifiers to be used in the consecutive event loop.

The next step of a typical analysis consists of a loop over all the events in the list and
calculation of the physics quantities of interest. Usually, for each event, there is a set of
embedded loops over the reconstructed entities such as tracks, V° candidates, neutral
clusters, etc., the main goal of which is to select the signal candidates. Inside each loop,
a number of criteria (cuts) are applied to reject the background combinations and to
select the signal ones. The cuts can be based on geometrical quantities such as impact
parameters of the tracks with respect to the primary vertex, distance between the
cluster and the closest track, distance-of-closest approach between the tracks, angle
between the momentum vector of the particle combination and the line connecting the
production and decay vertexes. They can also be based on kinematics quantities, such
as momentum ratios, minimal and maximal transverse momentum, angles in the rest
frame of the particle combination. Particle identification criteria are also among the most
common selection criteria.

The optimization of the selection criteria is one of the most important parts of the
analysis. The goal is to maximize the signal-to-background ratio in case of search
tasks, or another ratio (typically Sgnal / JSgnal + Background) in case of

measurement of a given property. Usually, this optimization is performed using
simulated events where the information from the particle generator is available.

After optimization of the selection criteria, one has to take into account the combined
acceptance of the detector. This is a complex, analysis-specific quantity which depends
on geometrical acceptance, trigger efficiency, decays of particles, reconstruction
efficiency, efficiency of the particle identification and of the selection cuts. The
components of the combined acceptance are usually parameterized and their product is
used to unfold the experimental distributions, or during the simulation of model
parameters.

59/199

The ALICE Offline Bible

The last part of the analysis usually involves quite complex mathematical treatment, and
sophisticated statistical tools. At this point, one may include the correction for
systematic effects, the estimation of statistical and systematic errors, etc.

Scheduled analysis

The scheduled analysis typically uses all the available data from a given period and
stores and registers the results using Grid middleware. The tag database is updated
accordingly. The AOD files generated during the scheduled analysis can be used by
several subsequent analyses, or by a class of related physics tasks. The procedure of
scheduled analysis is centralized and can be understood as data filtering. The
requirements come from the PWGs and are prioritized by the Physics Board, taking into
account the available computing and storage resources. The analysis code will be
tested in advance and released before the beginning of the data processing.

Each PWG will require some sets of AOD per event, which are specific for one or
several analysis tasks. The creation of those AOD sets is managed centrally. The event
list of each AOD set will be registered and the access to the AOD files will be granted to
all ALICE collaborators. AOD files will be generated at different computing centres and
will be stored on the corresponding storage elements. The processing of each file set
will thus be done in a distributed way on the Grid. Some of the AOD sets may be so
small that they would fit on a single storage element or even on one computer. In this
case, the corresponding tools for file replication, available in the ALICE Grid
infrastructure, will be used.

Chaotic analysis

The chaotic analysis is focused on a single physics task and is typically based on the
filtered data from the scheduled analysis. Each physicist also may access directly large
parts of the ESD in order to search for rare events or processes. Usually the user
develops the code using a small subsample of data, and changes the algorithms and
criteria frequently. The analysis macros and software are tested many times on
relatively small data volumes, both experimental and Monte Carlo. In many cases, the
output is only a set of histograms. Such a tuning of the analysis code can be done on a
local data set or on distributed data using Grid tools. The final version of the analysis
will eventually be submitted to the Grid and will access large portions or even the totality
of the ESDs. The results may be registered in the Grid file catalogue and used at later
stages of the analysis. This activity may or may not be coordinated inside the PWGs,
via the definition of priorities. The chaotic analysis is carried out within the computing
resources of the physics groups.

3.7.2 Infrastructure tools for distributed analysis

3.7.2.1gShell

The main infrastructure tools for distributed analysis have been described in Chapter 3
of the Computing TDR [197]. The actual middleware is hidden by an interface to the
Grid, gShell [*], which provides a single working shell. The gShell package contains all
the commands a user may need for file catalogue queries, creation of sub-directories in

60/199

The ALICE Offline Bible

the user space, registration and removal of files, job submission and process
monitoring. The actual Grid middleware is completely transparent to the user.

The gShell overcomes the scalability problem of direct client connections to databases.
All clients connect to the gLite [**] API services. This service is implemented as a pool of
pre-forked server daemons, which serve single-client requests. The client-server
protocol implements a client state, which is represented by a current working directory,
a client session ID and time-dependent symmetric cipher on both ends to guarantee
privacy and security. The daemons execute client calls with the identity of the
connected client.

3.7.2.2PROOF - the Parallel ROOT Facility

The Parallel ROOT Facility (PROOF [*]) has been specially designed and developed to
allow the analysis and mining of very large data sets, minimizing response time. It
makes use of the inherent parallelism in event data and implements an architecture that
optimizes 1/0 and CPU utilization in heterogeneous clusters with distributed storage.
The system provides transparent and interactive access to terabyte-scale data sets.
Being part of the ROOT framework, PROOF inherits the benefits of a performing object
storage system and a wealth of statistical and visualization tools. The most important
design features of PROOF are:

» transparency — no difference between a local ROOT and a remote parallel
PROOF session;

» scalability — no implicit limitations on number of computers used in parallel;

* adaptability — the system is able to adapt to variations in the remote
environment.

PROOF is based on a multi-tier architecture: the ROOT client session, the PROOF
master server, optionally a number of PROOF sub-master servers, and the PROOF
worker servers. The user connects from the ROOT session to a master server on a
remote cluster, and the master server creates sub-masters and worker servers on all
the nodes in the cluster. All workers process queries in parallel and the results are
presented to the user as coming from a single server.

PROOF can be run either in a purely interactive way, with the user remaining
connected to the master and worker servers and the analysis results being returned to
the user's ROOT session for further analysis, or in an “interactive batch' way where the
user disconnects from the master and workers (see Figure 8). By reconnecting later to
the master server the user can retrieve the analysis results for that particular query. The
latter mode is useful for relatively long running queries (several hours) or for submitting
many queries at the same time. Both modes will be important for the analysis of ALICE
data.

61/199

The ALICE Offline Bible

Proof slave servers - Proof slave servers Proof slave servers -

1 i1l
snu se:ez

| PROOF PROOF PROOF |
, ;}.

11
Ll site3

e el
—dd
o

.

4

Proofd
startup

Grid service

interfaces
~| PROOF PROOQF master
y z
TGrid Ul/Queue Ul | @= server

)

Grid access control | @

Authentication | @

LFNsMSN [;
Grid catalogue | @~ - || User session

Figure 8: Setup and interaction with the Grid middleware of a user PROOF session
distributed over many computing centres.

3.7.3 Analysis tools

This section is devoted to the existing analysis tools in ROOT and AliRoot. As
discussed in the introduction, some very broad analysis tasks include the search for
rare events (in this case, the physicist tries to maximize the signal-to-background ratio),
or measurements where it is important to maximize the signal significance. The tools
that provide possibility to apply certain selection criteria, and to find the interesting
combinations within a given event are described below. Some of them are very general
and used in many different places, for example the statistical tools. Others are specific
to a given analysis.

3.7.3.1Statistical tools

Several commonly used statistical tools are available in ROOT [197]. ROOT provides
classes for efficient data storage and access, such as trees (TTree) and ntuples
(TNtuple). The ESD information is organized in a tree, where each event is a separate
entry. This allows a chain of ESD files to be made and the elaborated selector
mechanisms to be used in order to exploit the PROOF services. The tree classes
permit easy navigation, selection, browsing, and visualization of the data in the
branches.

ROOT also provides histogramming and fitting classes, which are used for the
representation of all the one- and multi-dimensional distributions, and for extraction of
their fitted parameters. ROOT provides an interface to powerful and robust minimization
packages, which can be used directly during special parts of the analysis. A special
fitting class allows one to decompose an experimental histogram as a superposition of
source histograms.

ROOQOT also provides a set of sophisticated statistical analysis tools such as principal

62/199

The ALICE Offline Bible

component analysis, robust estimator and neural networks. The calculation of
confidence levels is provided as well.

Additional statistical functions are included in TMath.

3.7.3.2Calculations of kinematics variables

The main ROOT physics classes include 3-vectors, Lorentz vectors and operations
such as translation, rotation and boost. The calculations of kinematics variables such as
transverse and longitudinal momentum, rapidity, pseudo-rapidity, effective mass, and
many others are provided as well.

3.7.3.3Geometrical calculations

There are several classes which can be used for measurement of the primary vertex:
AlilTSVertexerZ, AlilTSVertexerlons, AlilTSVertexerTracks, etc. A fast estimation of
the z-position can be done by AlilTSVertexerZ, which works for both lead—lead and
proton—proton collisions. A universal tool is provided by AlilTSVertexerTracks, which
calculates the position and covariance matrix of the primary vertex based on a set of

tracks, and estimates the)(2 contribution of each track as well. An iterative procedure
can be used to remove the secondary tracks and improve the precision.

Track propagation towards the primary vertex (inward) is provided by AliESDtrack.

The secondary vertex reconstruction in case of V° is provided by AliVOvertexer, and, in
case of cascade hyperons, by AliCascadeVertexer. AlilTSVertexerTracks can be
used to find secondary vertexes close to the primary one, for example decays of open
charm like D® - K™77" or D* — K77 77". All the vertex reconstruction classes also
calculate distance-of-closest approach (DCA) between track and vertex.

Calculation of impact parameters with respect to the primary vertex is done during
reconstruction, and this information is available in AliIESDtrack. It is then possible to
recalculate the impact parameter during ESD analysis, after an improved determination
of the primary vertex position using reconstructed ESD tracks.

3.7.3.4Global event characteristics

The impact parameter of the interaction and the number of participants are estimated
from the energy measurements in the ZDC. In addition, the information from the FMD,
PMD, and TO detectors is available. It gives a valuable estimate of the event multiplicity
at high rapidities and permits global event characterization. Together with the ZDC
information, it improves the determination of the impact parameter, the number of
participants, and the number of binary collisions.

The event plane orientation is calculated by the AliFlowAnalysis class.

3.7.3.5Comparison between reconstructed and simulated
parameters

The comparison between the reconstructed and simulated parameters is an important

63/199

The ALICE Offline Bible

part of the analysis. It is the only way to estimate the precision of the reconstruction.
Several example macros exist in AliRoot and can be used for this purpose:
AliITPCComparison.C, AliITSComparisonV2.C, etc. As a first step in each of these
macros, the list of so-called “good tracks” is built. The definition of a good track is
explained in detalil in the ITS [*] and TPC [*] Technical Design Reports. The essential
point is that the track goes through the detector and can be reconstructed. Using the
“good tracks”, one then estimates the efficiency of the reconstruction and the resolution.

Another example is specific to the MUON arm: the MUONRecoCheck.C macro
compares the reconstructed muon tracks with the simulated ones.

There is also the possibility to calculate directly the resolutions without additional
requirements on the initial track. One can use the so-called track label and retrieve the
corresponding simulated particle directly from the particle stack (AliStack).

3.7.3.6Event mixing

One particular analysis approach in heavy-ion physics is the estimation of the
combinatorial background using event mixing. Part of the information (for example the
positive tracks) is taken from one event, another part (for example the negative tracks)
is taken from a different, but “similar”, event. The event “similarity” is very important,
because only in this case, the combinations produced from different events represent
the combinatorial background. Under “similar” in the example above we understand
events with the same multiplicity of negative tracks. In addition, one may require similar
impact parameters of the interactions, rotation of the tracks of the second event to
adjust the event plane, etc. The possibility for event mixing is provided in AliRoot by the
fact that the ESD is stored in trees, and one can chain and access simultaneously many
ESD objects. Then, the first pass would be to order events according to the desired
criterion of “similarity” and to use the obtained index for accessing the “similar” events in
the embedded analysis loops. An example of event mixing is shown in Figure 9. The
background distribution has been obtained using “mixed events”. The signal distribution
has been taken directly from the Monte Carlo simulation. The “experimental distribution”
has been produced by the analysis macro and decomposed as a superposition of the
signal and background histograms.

64/199

The ALICE Offline Bible

| ¢ meson mass (120000 pp events) |

-E F I
8 600 — 43
é = I :_¢J' y
g 500 " ¢ & Py
@ F I ¥
g 08
= 400: _ © Data
E ' —— Signal + Background
300
F e e Background
200 + Signal
F H
100 &y
.+ I
oBloriilay R T T T

Ly vgelopiw by wvalyaesy
0.89 1 101 1.02 1.03 1.04 105 106 1.07 1.08
M(K'K), GeV/c?

Figure 9: Mass spectrum of the ¥ meson candidates produced inclusively in the
proton—proton interactions.

3.7.3.7Analysis of the High-Level Trigger (HLT) data

This is a specific analysis that is needed either in order to adjust the cuts in the HLT
code, or to estimate the HLT efficiency and resolution. AliRoot provides a transparent
way of doing such an analysis, since the HLT information is stored in the form of ESD
objects in a parallel tree. This also helps in the monitoring and visualization of the
results of the HLT algorithms.

3.7.3.8EVE - Event Visualization Environment

EVE is composed of:
1. asmall application kernel;
2. graphics classes with editors and OpenGL renderers;

3. CINT scripts that extract data, fill graphics classes and register them to the
application.

Because the framework is still evolving at this point, some things might not work as
expected. The usage is the following:

1. Initialize ALICE environment.

2. Run the “alieve” executable, which should be in the path, and run the
alieve_init.C macro, for example:

To load the first event from the current directory:

alieve alieve_init.C

To load the 5th event from directory /data/my-pp-run:
alieve "alieve_init.C("/datal/ny-pp-run", 5)'

Interactively:
alieve

65/199

The ALICE Offline Bible

root[0] .L alieve_init.C
root[1] alieve_init("/sonedir")

3. Use the GUI or the CINT command-line to invoke further visualization macros.

4. To navigate through the events use macros 'event_next.C' and 'event_prev.C'.
These are equivalent to the command-line invocations:

root[x] Alieve::gEvent->NextEvent ()

or

root[x] Alieve::gEvent->PrevEvent ()

The general form to access an event via its number is:
root[x] Alieve::gEvent->Cot oEvent (<event - nunber >)

See the files in EVE/alice-macros. For specific use cases, these should be edited to suit
your needs.

Directory structure

EVE is split into two modules: REVE (ROOT part, not dependent on AlIROOT) and
ALIEVE (ALICE specific part). For the time being, both modules are kept in AlIROOT
CVS under the $ALICE_ROOQOT directory

ALIEVE/ and REVE/ sources

macros/ macros for bootstraping and internal steering

alice-macros/ macros for ALICE visualization

alica-data/ data files used by ALICE macros

test-macros/ macros for tests of specific features; usually one needs to

copy and edit them
bin/, Makefile and make_base.inc used for stand-alone build of the packages.

Note that a failed macro-execution can leave CINT in a poorly defined state that
prevents further execution of macros. For example:

Exception Reve::Exc_t: Event::Open fail ed opening ALICE ESDfri end
from

‘/alice-datal/coctail _10k/Al'i ESDfri ends. root".

root [1] Error: Function MJON_geom() is not defined in current
scope :0:

*** |nterpreter error recovered ***

Error: G _unloadfile() File "/tnmp/ MJON_geom C' not | oaded :O:

“gROOT->Reset()” helps in most of the cases.

3.7.4

66/199

The ALICE Offline Bible

3.8Data input, output and exchange subsystem of AliRoot

This section, in its original form, was published in [*].

A few tens of different data types are present within AliRoot, because hits, summable
digits, digits and clusters are characteristic for each sub-detector. Writing all of the
event data to a single file causes a number of limitations. Moreover, the reconstruction
chain introduces rather complicated dependencies between different components of the
framework, what is highly undesirable from the point of view of software design. In order
to solve both problems, we have designed a set of classes that manage data
manipulation, i.e. storage, retrieval and exchange within the framework.

It was decided to use the “white board” concept, which is a single exchange object
where all data are stored and made publicly accessible. For that purpose, we have
employed TFolder facility of ROOT. This solution solves the problem of inter-module
dependencies.

There are two frequently occurring use-cases regarding data-flow within the framework:
1. data production: produce - write - unload (clean)
2. data processing: load (retrieve) - process - unload

Loaders are utility classes that encapsulate and automate those tasks. They reduce the
user's interaction with the 1/O routines to the necessary minimum, providing a friendly
and manageable interface, which for the above use-cases, consists of only 3 methods:

» Load - retrieves the requested data to the appropriate place in the white board
(folder)

67/199

The ALICE Offline Bible

e Unload — cleans the data
* Write — writes the data
Such an insulation layer has number of advantages:
» facilitate data access,
» avoid the code duplication in the framework,

« minimize the risk of bugs in /0O management. The ROOT object oriented data
storage extremely simplifies the user interface, however, there are a few pitfalls
that are not well known to inexperienced users.

To begin with, we need to introduce briefly basic concepts and the way AliRoot
operates. The basic entity is the event, i.e. all data recorded by the detector in a certain
time interval plus all the information reconstructed from these data. Ideally, the data are
produced by a single collision selected by a trigger for recording. However, it may
happen that the data from the previous or proceeding events are present, because the
bunch-crossing rate is higher than the maximum detector frequency (pile-up), or simply
more than one collision occurred within one bunch crossing.

Information describing the event and the detector state is also stored, like bunch
crossing number, magnetic field, configuration, alignment, etc. In the case of Monte-
Carlo simulated data, information concerning the generator simulation parameters is
also kept. Altogether, this data is called the “header”.

In case of collisions that produce only a few tracks (best example are the pp collisions),
it may happen that the total overhead (the size of the header and the ROOT structures
supporting object oriented data storage) is not negligible compared to the data itself. To
avoid such situations, the possibility of storing an arbitrary number of events together
within a run is required. Hence, the common data can be written only once per run and
several events can be written to a single file.

It was decided that data related to different detectors and different processing phases
should be stored in different files. In such a case, only the required data need to be
downloaded for an analysis. It also allows for practical altering of the files if required, for
example, when a new version of reconstruction or simulation has to be run for a given
detector. Hence, only new files are updated and all the rest remains untouched. It is
especially important, because it is difficult to erase files in mass storage systems. This
also provides for easy comparison with data produced by competing algorithms.

Header data, configuration and management objects are stored in a separate file, which
is usually named galice.root (for simplicity we will further refer to it as galice).

3.8.1 The “White Board”

The folder structure is shown in Figure 10. It is divided into two parts:
+ event data that have the scope of single event

« static data that do not change from event to event, i.e. geometry and
alignment, calibration, etc.

68/199

The ALICE Offline Bible

During start-up of AliRoot the skeleton structure of the ALICE white board is created.
The AliConfig class (singleton) provides all the functionality that is needed to construct

the folder structures.

Event data are stored under a single subfolder (the event folder), named as specified by
the user when opening a session (run). Many sessions can be opened at the same
time, provided that each of them has an unique event folder name, so they can be
distinguished. This functionality is crucial for superimposing events on the level of the
summable digits, i.e. analogue detector response without the noise contribution (event
merging). It is also useful when two events, or the same event either simulated or
reconstructed using different algorithms, need to be compared.

Eile ¥iew Options

Help

[Qms =] N B Optiunl -
| &l Folders | Contents of " ATS/TreeHATS"
[Jract 5 @iz I GetDetector()
J FROOF Sessions $ Getlonization() B GetPRGO)
’(\;iJ'homeJ’skowronIcernJ‘aJirootNéi—DZ—Hev—m & GetPyvGE) * GetPZGo)
\r—’ ROOT Files [k GetParticled I GetTOR)
— 'I:E'ders o CetTrackStatus) 3 GetTrack Statusng)
4 ST;::;WS By GetiG() e GetvGi)
i Getzo) B 175 1Bits
B E.Er;:odules s 175 fDestep 5% 175 fDet
&1 @ Data i 175 fLaclder B 175 FLayer
o s b 1T5.fPx B 1TS.APy
- E-ETreeD b 1T51F2 e 1T 1 Status
B TreeH 1715 fStatus0 B 1T5.ATaf
: T3 175 Track &% 175 Uriicque 1D
B TP E MR sy
 E[TresD BTS2 e 175110
@[TreeH g 1T5.1R0 e msno
L ToF 175120 B statusilivel)
[CRICH ﬁ StatusDisappeared() % StatusEnteringl)
[Azoc h statusExiting) B statusinsidel)
£ "F;}THD I statusOut¢) s statusStopd)
- [FMD
—[IMuon
[[JPHOS
- [PMD
[=TART
[JEMEAL
‘. (EVZERD
_i Conditions
[configuration
[Heacker
| 80 Dbiects. [.

Figure 10: The folders structure. An example event is mounted under the “Event” folder.

3.8.2 Loaders

Loaders can be represented as a four layer, tree like structure (see Figure 11). It
represents the logical structure of the detector and the data association.

69/199

The ALICE Offline Bible

Event Name

KineDataloader ~———n
HeaderDataloader —————

DetectorLoaders [] ” =
\ T
.

ITSLoader TPCLoader TRDLoader

Dataloaders [] Dataloaders [] Defat padors [}

Hits SDigits Digits Header

Baseloaders[] | Baseloaders[] | |Baseloaders (]

BaseLoaders (]

Hits SDigits Digits Kine

]
Baseloaders[] = |Baseloaders[] | | Baseloaders|] BaseLoaders []

L
*' Producer

QA) QATask QATask

Figure 11: Loaders diagram. Dashed lines separate layers serviced by the different
types of the loaders (from top): AliRunLoader, AliLoader, AliDatal oader,
AliBasel oader.

1. AliBaseLoader — One base loader is responsible for posting (finding in a file
and publishing in a folder) and writing (finding in a folder and putting in a file) of
a single object. AliBaseLoader is a pure virtual class because writing and
posting depend on the type of an object. the following concrete classes are
currently implemented:

® AliObjectLoader — It handles TObject, i.e. any object within ROOT
and AliRoot since an object must inherit from this class to be posted to
the white board (added to TFolder).

® AliTreelLoader - It is the base loader for TTrees, which requires
special handling, because they must be always properly associated
with a file.

® AliTaskLoader — It handles TTask, which need to be posted to the
appropriate parent TTask instead of TFolder.

AliBaselLoader stores the name of the object it manages in its base class
TNamed to be able to find it in a file or folder. The user normally does not need
to use these classes directly and they are rather utility classes employed by
AliDatal oader.

2. AliDataloader manages a single data type, for example digits for a detector or
kinematics tree. Since a few objects are normally associated with a given data
type (data itself, quality assurance data (QA), a task that produces the data, QA
task, etc.). AliDataLoader has an array of AliBaselLoader, so each of them is
responsible for each object. Hence, AliDataloader can be configured to meet
the specific requirements of a certain data-type.

A single file contains data corresponding to a determined processing phase and
of one specific detector only. By default, the file is named according to the
schema Detector Name + Data Name + .root but it can be changed during run-
time if needed. Doing so, the data can be stored in or retrieved from an

70/199

The ALICE Offline Bible

alternative source. When needed, the user can limit the number of events
stored in a single file. If the maximum number is exceeded, the current file will
be closed and a new one will be created with the consecutive number added to
the name of the first one (before the .root suffix). Of course, during the reading
process, files are also automatically interchanged behind the scenes, invisible
to the user.

The AliDatal oader class performs all the tasks related to file management e.g.
opening, closing, ROOT directories management, etc. Hence, for each data
type the average file size can be tuned. This is important, because it is on the
one hand undesirable to store small files on the mass storage systems, on the
other hand, all file systems have a maximum allowed file size.

3. AliLoader manages all data associated with a single detector (hits, digits,
summable digits, reconstructed points, etc.). It contains an array of
AliDatal oader, and each of them manages a single data-type.

The AliLoader object is created by a class representing a detector (inheriting
from AliDetector). Its functionality can be extended and customized to the
needs of a particular detector by creating a specialized class that derives from
AliLoader. The default configuration can be easily modified either in
AliDetector::MakeLoader or by overriding the method AliLoader::InitDefaults.

4. AliRunLoader is the main handler for data access and manipulation in AliRoot.
There is only one such an object for each run. It is always named RunLoader
and stored on the top (ROOT) directory of a galice file.

It keeps an array of AliLoader's, one for each detector, manages the event
data that are not associated with any detector —i.e. Kinematics and Header —
and utilizes instances of AliDataloader for this purpose.

The user opens a session using the static method AliRunLoader::Open, which
takes three parameters: file name, event folder name and mode. If mode is
“new”, a file and a run loader are created from scratch. Otherwise, a file is
opened and a run loader gets looked-up inside the file. If successful, the event
folder is created under the name provided (if it does not exist yet), and the
structure presented in Figure 11 is created within the folder. The run loader is
put into the event folder, so the user can always find it there and use it for
further data management.

AliRunLoader provides the simple method GetEvent(n) to loop over events
within a run. A call clears all currently loaded data and automatically posts the
data for the newly requested event.

In order to facilitate the way the user interacts with the loaders, AliRunLoader
provides a set of shortcut methods. For example, if digits are required to be
loaded, the user can call AliRunLoader::LoadDigits("ITS TPC") instead of
finding the appropriate AliDataLoader's responsible for digits for ITS and TPC,
and then request to load the data for each of them.

71/199

The ALICE Offline Bible

3.9Calibration and alignment

3.9.1 Calibration framework

The calibration framework is based on the following principles:

The calibration and alignment database contains instances of ROOT TObject
stored in ROQOT files.

Calibration and alignment objects are run-dependent objects.

The database is read-only and provides for automatic versioning of the stored
objects.

Three different data storage structures are available:

® a GRID folder containing ROOT files, each one containing one single
ROOT object. The ROQOT files are created inside a directory tree,
defined by the object's name and run validity range;

® a LOCAL folder containing ROOT files, each one containing one single
ROOT object, with a structure similar to the Grid one;

® a LOCAL ROQT file containing one or more objects (so-called “dump”).
The objects are stored into ROOT TDirectories defined by the object's
name and run range.

Object storing and retrieval techniques are transparent to the user: he/she
should only specify the kind of storage he wants to use (“Grid”, “local”, “dump”).
Objects are stored and retrieved using AliCDBStorage::Put and
AliCDBStorage::Get. Multiple objects can be retrieved using

AliCDBStorage::GetAll.

During object retrieval, it is possible to specify a particular version by means of
one or more selection criteria.

The main features of the CDB storage classes are the following [*]:

AliCDBManager is a singleton that handles the instantiation, usage and
destruction of all the storage classes. It allows the instantiation of more than
one storage type at a time, keeping track of the list of active storages. The
instantiation of a storage element is done by means of
AliCDBManager::GetStorage. A storage element is identified by its “URI” (a
string) or by its “parameters”. The set of parameters defining each storage is
contained in its specific AliCDBParam class (AliCDBGridParam,
AliCDBLocalParam, AliCDBDumpParam).

72/199

The ALICE Offline Bible

In order to avoid version clashes when objects are transferred from Grid to local
and vice versa, we have introduced a new versioning schema. Two version
numbers define the object: a “Grid” version and a “Local” version (sub-version).
In local storage, only the local version is increased, while in Grid storage, only
the Grid version is increased. When the object is transferred from local to Grid
the Grid version is increased by one; when the object is transferred from Grid to
Local the Grid version is kept and the sub-version is reset to zero.

AliCDBENtry is the container-class of the object and its metadata, whereas the
metadata of the object has been divided into two classes: AliCDBId contains
data used to identify the object during storage or retrieval, and
AliCDBMetaData holds other metadata which is not used during storage and
retrieval.

The AliCDBId object in turn contains:

® An object describing the name (path) of the object (AliCDBPath). The
path name must have a fixed, three-level directory structure:
“levell/level2/level3”

® An object describing the run validity range of the object
(AliCDBRunRange)

® The version and subversion numbers (automatically set during storage)

® A string (fLastStorage) specifying from which storage the object was
retrieved (“new”, “Grid”, “local”, “dump”)

The AliCDBId object has two functions:
® During storage it is used to specify the path and run range of the
object;

® During retrieval it is used as a “query”: it contains the path of the object,
the required run and if needed the version and subversion to be
retrieved (if version and/or subversion are not specified, the highest
ones are looked up).

Here, we give some usage examples:

A pointer to the single instance of the AliCDBManager class is obtained by
invoking AliCDBManager::Instance().

A storage is activated and a pointer to it is returned using the
AliCDBManager::GetStorage(const char* URI) method. Here are some
examples of how to activate a storage via an URI string. The URI's must have a
well defined syntax, for example (local cases):

® “local:/DBFolder” to local storage with base directory “DBFolder”
created (if not existing from the working directory)

® “local://$ALICE_ROOT/DBFolder” to local storage with base directory
“$ALICE_ROOT/DBFolder” (full path name)

® “dump://DBFile.root” to Dump storage. The file DBFile.root is looked for

73/199

The ALICE Offline Bible

or created in the working directory if the full path is not specified

® “dump://DBFile.root;ReadOnly” to Dump storage. DBFile.root is opened
in read only mode.

Concrete examples (local case):

Al i CDBSt orage *sto =
Al i CDBManager: : I nstance() - >Get St orage(" | ocal : // DBFol der"):

Al'i CDBSt or age *dunmp =
Al i CDBManager: : I nst ance() - >Get St or age
("dunp:///datal/ DBFi | e. root; ReadOnl y"):

Creation and storage of an object, how an object can be created and stored in a local
database:

Let's suppose our object is an AliZDCCalibData object (container of arrays of
pedestals constants), whose name is “ZDC/Calib/Pedestals” and is valid for run 1 to 10.

Al'i ZDCCal i bData *cal i bda = new Al i ZDCCal i bDat a() ;
[l ... filling calib data...

/'l creation of the AliCDBId object (identifier of the object)
Ali CDBId id("ZDC Cali b/ Pedestal s", 1, 10);

/1 creation and filling of the Al i CDBMetaData
Al i CDBMet aData *md = new Al i CDBMet aDat a() ;
md->Set... // fill metadata object, see |list of setters...

/1 Activation of |ocal storage
Al i CDBSt orage *sto =
Al i CDBManager : : I nst ance() - >Get St or age("| ocal : // $HOVE/ DBFol der ") ;

/1 put object into database
sto->Put (calibda, id, nd);

The object is stored into local file:
$HOME/DBFolder/ZDC/Calib/Pedestals/Run1_10_v0_s0.root

Retrieval of an object:

/1 Activation of |ocal storage
Al i CDBSt orage *sto =
Al i CDBManager : : I nst ance() - >Get St or age("| ocal : // $HOVE/ DBFol der ") ;

/1 Get the Ali CDBEntry which contains the object
"ZDCl Cal i b/ Pedest al s",

valid for run 5, highest version
Ali CDBEntry* entry = sto->Get("ZDJ Cal i b/ Pedest al s", 5)

/1 alternatively, create an Ali CDBId query and use sto->Cet
(query)

/1 specifying the version: | want version 2
Al i CDBEntry* entry = sto->Get("ZDC Cal i b/ Pedestal s", 5, 2)

/'l specifying version and subversion: | want version 2 and

74/199

The ALICE Offline Bible

subVersion 1
Al i CDBEntry* entry = sto->Get("ZDCJ Cal i b/ Pedestal s", 5, 2, 1)

Selection criteria can be also specified using AliCDBStorage::AddSelection (see also
the methods RemoveSelection, RemoveAllSelections and PrintSelectionList):

/1 1 want version 2_1 for all "zZDC Calib/*" objects for runs 1-100
st 0- >AddSel ection("zDC/ Cal i b/*", 1,100, 2, 1);

/1 and | want version 1 0 for "ZDC Cali b/ Pedestal s" objects for runs
5-10

st o- >AddSel ecti on(" zZDC/ Cal i b/ Pedest al s", 5, 10, 1, 0)

Al i CDBEntry* entry = sto->Get("ZDC Cal i b/ Pedest al s", 5)

Retrieval of multiple objects with AliCDBStorage::GetAll
TList *list = sto->GetAl |l ("zDC/ *",5)

Use of default storage and drain storages:

AliCDBManager allows to set pointers to a “default storage” and to a “drain storage”. In
particular, if the drain storage is set, all the retrieved objects are automatically stored
into it.

The default storage is automatically set as the first active storage.

Examples of how to use default and drain storage:

Al i CDBManager: : I nstance() - >Set Def aul t St or age
("l ocal :// $HOVE/ DBFol der") ;

Al i CDBManager : : I nst ance() - >Set Dr ai n(" dunp: // $HOVE/ DBDr ai n. root ") ;
Al'i CDBEntry *entry =

Al i CDBManager : : I nst ance() - >Get Def aul t St or age() - >Get
("ZDCl Cal i b/ Pedest al s", 5)

/'l Retrieved entry is automatically stored into DBDrain.root !

To destroy the AliCDBManager instance and all the active storages:
Al i CDBManager: : I nstance() - >Destroy()

Create a local copy of all the alignment objects
Al i CDBManager* nan = Al i CDBManager: : I nstance();
man- >Set Def aul t St or age(
"alien://folder=/alicel/simulation/2006/ PDC06/ Resi dual / CDB/ ") ;

man- >Set Drai n("l ocal : // $ALI CE_ROOT/ CDB") ;

Al i CDBSt or age* sto = man- >Get Def aul t St or age() ;
sto->GetAll ("*", 0);

75/199

The ALICE Offline Bible

/1 Al the objects are stored in $ALI CE_ROOT/ CDB !

3.10The Event Tag System

The event tag system [*] is designed to provide fast pre-selection of events with the
characteristics desired. This task will be performed, first of all, by imposing event
selection criteria within the analysis code and then by interacting with software that is
designed to provide a file-transparent event access for analysis. The latter is an
evolution of the procedure that has already been implemented by the STAR [
collaboration.

In the next sections, we will first describe the analysis scheme using the event tag
system. Then, we will continue by presenting in detail the existing event tag prototype.
Furthermore, a separate section is dedicated to the description of the two ways to
create the tag files and their integration in the whole framework [197].

3.10.1The Analysis Scheme

ALICE collaboration intends to use a system that will reduce time and computing
resources needed to perform an analysis by providing to the analysis code just the
events of interest as they are defined by the users' selection criteria. Figure 12 gives a
schematic view of the whole analysis architecture.

ANALYSIS FRAMEWORK

TAG FILES

RECONSTRUCTION oD | Tegfadk HREREHILBER
POST PROCESS i | e fens
GUID | Tag fields
LIST OF
EVENTS
GROUPED QUERY
BY GUID
BITMAP INDICES
GUID-EVENTLIST QUERY
PROOF/AIiENn ANALYSIS CODE

LIST OF EVENTS
GROUPED BY GUID

Figure 12: The selected analysis scheme using the event tag system
Before describing the architecture, let us first define a few terms that are listed in this
figure:

* User/Administrator: A typical ALICE user, or even the administrator of the
system, who wants to create tag files for all or a few ESDs [197] of a run.

« Index Builder: A code with Grid Collector [*', **] functionality that allows the
creation of compressed bitmap indices from the attributes listed in the tag files.

76/199

The ALICE Offline Bible

This functionality will provide an even faster pre-selection.

« Selector: The user's analysis code that derives from the TSelector class of
ROOT [*].

The whole procedure can be summarized as follows: The offline framework will create
the tag files, which will hold information about each ESD file (top left box of Figure 12)
as a final step of the whole reconstruction chain. The creation of the tag files is also
foreseen to be performed by each user in a post-process that will be described in the
following sections. These tag files are ROOT files containing trees of tag objects. Then,
following the procedure flow as shown in Figure 12, the indexing algorithm of the Grid
Collector, the so-called Index Builder, will take the produced tag files and create the
compressed bitmap indices. In parallel, the user will submit a job with some selection
criteria relevant to the corresponding analysis he/she is performing. These selection
criteria will be used in order to query the produced compressed indices (or as it is done
at the moment, the query will be on the tags themselves) and the output of the whole
procedure will be a list of TEventList objects grouped by GUID, which is the file's
unique identifier in the file catalogue, as it is shown in the middle box of Figure 12. This
output will be forwarded to the servers that will interact with the file catalogue in order to
retrieve the physical file for each GUID (left part of Figure 12). The final result will be
passed to a selector [198] that will process the list of the events that fulfil the imposed
selection criteria and merge the output into a single object, whether this is a histogram,
a tree or any ROOT object.

The whole implementation is based on the existence of an event tag system that will
allow the user to create the tags for each file. This event tag system has been used
inside the AliRoot framework [**] since June 2005. In the next section we will describe
this system in detail.

3.10.2The Event Tag System

The event tag system has been built with the motivation to provide a summary of the
most useful physics information that describe each ESD to the user. It consists of four
levels of information [*°] as explained in Figure 13:

* Run Level: Fields that describe the run conditions and configurations which are
retrieved from the Detector Control System (DCS), the Data Acquisition system
(DAQ) and the offline framework.

e LHC Level: Fields that describe the LHC condition per ALICE run which are
retrieved from the DCS.

» Detector Level: Fields that describe the detector configuration per ALICE run
which are retrieved from the Experiment Control system (ECS).

« Event Level: Fields that describe each event - mainly physics related
information, retrieved from offline and the Grid file catalogue.

77/199

The ALICE Offline Bible

Tag System - Sources of Information

\ LHC Tag fields Id—{ DCS I
Detector Tag field*—{ ECS I

Run Tag fields

Event Tag fields }§

File catalog

Figure 13: Sources of information for different levels of the event tag system

The corresponding classes that form this system have already been included in
AliRoot's framework under the STEER module. The output tag files will be ROOT files
having a tree structure [199].

Run tags: The class that deals with the run tag fields is called AliRunTag. One
AliRunTag object is associated with each file.

LHC tags: The class that deals with the LHC tag fields is called AliLHCTag. One
AliLHCTag object is associated with each file.

Detector tags: The class that deals with the detector tag fields is called
AliDetectorTag. Information concerning the detector configuration per ALICE run will
be described in the ECS database. One AliDetectorTag object is associated with each
file.

Event tags: The class that handles the event tag fields is called AliEventTag. The
values of these fields, as mentioned before, will be mainly retrieved from the ESDs,
although there are some fields that will come from the Grid file catalogue. The number
of AliEventTag objects that are associated to each file is equal to the number of events
that are stored inside the initial ESD file.

3.10.3The Creation of the Tag-Files

The creation of the tag-files will be the first step of the whole procedure. Two different
scenarios were considered:

» On-the-fly-creation: The creation of the tag file comes as a last step of the
reconstruction procedure.

» Post-creation: After the ESDs have been transferred to the ALICE file
catalogue [197], every user has the possibility to run the creation of tag-files as
post-process and create his/her own tag-files.

78/199

The ALICE Offline Bible

3.10.3.1The on the fly creation scenario

As mentioned before, the on-the-fly creation of tag-files is implemented in such a way
that the tags are filled as last step of the reconstruction chain. This process is managed
inside the AliReconstruction class. Thus, exactly after the creation of the ESD, the file
is passed as an argument to AliReconstruction::CreateTags. Inside this method,
empty AliRunTag and AliEventTag objects are created. The next step is to loop over
the events listed in the ESD file, and finally fill the run and event level information. The
naming convention for the output tag file is:
RunRunld.EventFirstEventld_LastEventld.ESD.tag.root [199].

3.10.3.2The post-creation scenario

The post-creation procedure provides the possibility to create and store the tag-files at
any time [199]. The post-creation of the tag-files implies the following steps:

» The reconstruction code finishes and several ESD files are created.
» These files are then stored in the ALICE file catalogue [].

e Then, the administrator, or any user in the course of her/his private analysis,
can loop over the produced ESDs and create the corresponding tag-files.

» These files can either be stored locally or in the file catalogue [].

* As afinal step, a user can choose to create a single merged tag file from all the
previous ones.

What a user has to do in order to create the tag-files using this procedure, depends on
the location of the input AlIESDs.root files. Detailed instructions on how to create tag-
files for each separate case will be given in the following sections. In general, a user
has to perform the following steps:

» Provide information about the location of the AIESDs.root files:
® Result of a query to the file catalogue (TGridResult [*%])

Grid stored ESDs

An upper level local directory

Locally stored ESDs or even a text file

CERN Analysis Facility (CAF) stored ESDs [*].

« Loop over the entries of the given input (TGridResult, local path, text file) and
create the tag file for each entry.

» Either store the files locally or in the Grid's file catalogue

* Merge the tag-files into one file and store it accordingly (locally or in the file
catalogue) [**].

Figure 14 provides a schematic view of these functionalities.

79/199

The ALICE Offline Bible

POST CREATION
Create a collection
Ttarld Result (GRID)
Mmm _P Read the collection
File mams (CAF)

Store tags locally

Create the tags

)«:r\gc the tags

Store tags in AlIEn

Figure 14: A schematic view of the architecture of the post-creation of tag-files

The class that addresses this procedure is AliTagCreator. The main methods of the
class and their corresponding functionalities are described in the following lines:

SetStorage allows the user to define the place where the tag-files will be stored.
SetSE allowsto define the desired storage element on the Grid.

SetGridPath allows the user to define the Grid path under which the files will be
stored. Per default, the tag-files will be stored in the home directory of the user
in the file catalogue.

ReadGridCollection is used when creating tag-files from ESDs that are stored
in the file catalogue. It loops over the corresponding entries and calls
AliTagCreator::CreateTags in order to create the tag-files that will be stored
accordingly.

ReadCAFCollection is used when creating tag-files from ESDs that are stored
in the CERN Analysis Facility (CAF) [199].

ReadLocalCollection is used when creating tag-files from ESDs that are stored
locally.

MergeTags chains all the tags, locally or stored or in the Grid, and merges
them by creating a single tag file named RunRunid.Merge.ESD.tag.root. This
file is then stored either locally or in the Grid according to the value set in the
SetStorage method.

3.10.3.3Usage of AliRoot classes

The following lines intend to give an example on how to use the AliTagCreator class in
order to create tags. Additional information can be found in[199]. There are three
different cases depending on the location where the AIESDs.root files are stored:

Locally stored AlIESDs.root files;
CAF stored AIIESDs.root files;
Grid stored AlIESDs.root files.

80/199

The ALICE Offline Bible

We will address the three different cases separately.
Locally stored AlIESDs.root

We assume that for debugging or source code validation reasons, a user stored a few
AliIESDs.root files locally under $HOME/PDCO06/pp. One level down, the directory
structure can be of the form:

e xxx/AliIESDs.root
* yyy/AliIESDs.root
e zzz/AliIESDs.root

where xxx is the directory which can can sensibly be named Run1, Run2 etc. or even
simply consists of the run number. In order to create the tag-files, we need to create an
empty AliTagCreator object. The next step is to define whether the produced tags will
be stored locally or on the Grid. If the second option is chosen, the user must define the
SE and the corresponding Grid path where the tag-files will be stored. If the first option
is chosen, the files will be stored locally in the working directory. Finally, the call of
AliTagCreator::ReadlLocalCollection allows the user to query the local file system and
create the tag-files.
/lcreate an Ali TagCreator object

Al'i TagCreator *t = new Ali TagCreator();

//Store the tag-files locally

t->Set Storage(0);

/'l Query the file system create the tags and store them

t - >ReadLocal Col | ecti on("/ home/ <user nane>/ PDC06/ pp") ;

//Merge the tags and store the nerged file

t->MergeTags() ;

AliESDs.root on the CAF

When ESD files are to be stored on the CAF, we have to provide a text file that contains
information about the location of the files in the storage element of the system [199,
199]. We now assume that this input file is called ESD.txt and is located in the working
directory, indicate the steps that one has to follow:
/lcreate an Ali TagCreator object

Ali TagCreator *t = new Ali TagCreator();

//Store the tag-files in AliEn's file catal og

t->Set St orage(0);

//Read the entries of the file, create the tags and store them

t - >ReadCAFCol | ection("ESD. txt");

/1 Merge the tags and store the nerged file

t - >Mer geTags() ;

AliESDs.root on the GRID

When ESD files are stored in the file catalogue, the first thing a user needs to have is a
ROOQOT version compiled with AliEn support. Detailed information on how to do this can
be found in [199]. Then, we need to invoke the AliIEn API services [199] and passing a
query to the file catalogue (TGridResult). The following lines give an example of the
whole procedure:

81/199

The ALICE Offline Bible

//connect to Ali En's APl services

TG id:: Connect("alien://pcapiservOl. cern.ch: 10000", "<user nane>");
/lcreate an Ali TagCreator object

Al'i TagCreator *t = new Ali TagCreator();

/Il Query the file catal ogue and get a TGi dResult

TG idResult* result =
gGid->Query("/alicelcern.ch/user/p/pchristal PDCO6/ pp/*",
"Ali ESDs.root","","");

/l1Store the tag-files in AliEn's file catal og

t->Set Storage(1);

// Define the SE where the tag-files will be stored

t->Set SE("ALI CE: : CERN: : se01");

//Define the Gid s path where the tag-files will be stored
t->Set Gri dPat h(" PDC06/ Tags") ;

// Read the TGridResult, create the tags and store them
t->ReadG i dCol | ection(result);

/I Merge the tags and store the nerged file

t - >Mer geTags() ;

3.11Meta-data in ALICE

82/199

The ALICE Offline Bible

4 Run and File Metadata for the ALICE File
Catalogue

4.1Introduction

In order to characterize physics data it is useful to assign metadata to different
levels of data abstraction. For data produced and used in the ALICE experiment a three
layered structure will be implemented:

* Run-level metadata,
* File-level metadata, and
+ Event-level metadata.

This approach minimizes information duplication and takes into account the actual
structure of the data in the ALICE File Catalogue.

Since the event-level metadata is fully covered by the so called 'event tags' (stored in
the ESDtags.root files), it will not be discussed in this document. There is a
mechanism in place to efficiently select physics data based on run- and file-level
conditions and then make a sub-selection on the event level, utilizing the event level
metadata. This pre-selection on run- and file-level information is not necessary, but can
speed up the analysis process.

This document is organized as follows: First we will discuss the path and file name
specifications. The list of files/file types to be incorporated in the file catalogue will be
discussed. Finally, we will list the meta tags to be filled for a given run (or file).

4.2Path name specification

The run and file metadata will be stored in the ALICE File Catalogue. A directory
structure within this database will ensure minimization of metadata duplication. For
example, all files written during one specific physics-run do not need to be tagged one
by one with a 'run' condition, since all files belonging to this physics run will be tagged
with the same information at the run directory level. It is advantageous to organize all
these files in a directory tree, which avoids additional tagging of all files. Since this tree
structure will be different to that of CASTOR, a mechanism is provided to make sure
that the files once created by DAQ are later ‘tagged’ with the proper information
encoded in the directory tree itself.

The CASTOR tree structure will look like
/castor/cern.ch/.../<Years/<Month>/<Day>/<Hour>/.

The CASTOR file names will be of fixed width, containing information about the year
(two digits: YY), the run-number (9 digits, zero padded: RRRRRRRRR), the host-

83/199

The ALICE Offline Bible

identifier of the GDC (three digits, zero padded: NNN), and a sequential file-count (S),
ending up in names of the following structure:

YYRRRRRRRRRNNN.S.raw or YYRRRRRRRRRNNN.S.root.

This is different to what we discussed before where the CASTOR system and the file
catalogue had the same directory structure, and getting the ‘hidden’ information from
the CASTOR path name was easy.

The path name(s) where all ALICE files will be registered in the ALICE File Catalogue
will have the following structure:

/data/<Year >/<AcceleratorPeriod >/< RunNumber >/ for real data,
/sim/<Year >/<ProductionType >/<RunNumber >/ for simulated data,

where <Year », <AcceleratorPeriod >, and < RunNumber > contain values like 2007,
LHC7a, and 123456789 (nine digits, zero padded). <ProductionType> gives
information about the specific simulation which was run, which includes the ‘level of
conditions’ applied: Ideal, Full, Residual. Therefore one possibility example for a
name for<ProductionType > would be PDC06_Residual. The subdirectory structure
provides the place for different files from the specific runs and will be called

raw/ for raw data,

reco/<PassX>/cond/ for links to calibration and condition files,
reco/<PassX>/ESD/ for ESD and corresponding ESD tag-files,
reco/<PassX>/A0OD/ for AOD files.

The list of these subdirectories might be extended on a later stage if necessary.

<PassX > will specify a certain reconstruction pass (encoded in a production tag) of the
raw data in the same parent directory. For each raw data file the output files of several
production passes might be present in the reco/ directory, to be distinguished from
each other by a different production tag < PassX ».

The cond/ directory will contain a data set (in the form of an xml-file) which links back
to the actual condition data base (CDB) files. The CDB files themselves will be stored in
a three layered directory tree:

<Detector >/« Type >/< Subtype >,

where <Detector > will be something like TPC, TRD, PHOS, ..., and < Type > Will specify
the type of condition data, like calib or Align. <Subtype> Can assume generic
strings like Data, Pedestals, or Map. These conditions may be stable on a longer time
scale than a single run. In order to avoid duplication or replication of these files (which
can be quite large in case of certain mapping files) for each run, they will be put a few
levels higher, namely in the

/data/<Year >/<AcceleratorPeriod>/CDB/

directory. The name of the actual calibration files (stored in the subdirectories
<Detector>/<Type >/<Subtype > mentioned above) is chosen in a way to make a
successful mapping between the correct calibration files for each run:

84/199

The ALICE Offline Bible

Run<XXX>_ <¥YYY> v<ZZ>.root,

where «<XxXX > and < YYY > is the first and last run number for which this file applies, and
<22 > is the calibration version number.

4.3File name specification

The file names of the stored ALICE data will be kept simple, and are considered unique
for the current subdirectory, for example

<NNN>.<S>.AliESDs.root for ESD files,

where <«NNN»>.<S> is the identifier of the corresponding raw data file
(«<NNN>.<S>.raw/<NNN>.<S>.root, also called raw data-chunk). Therefore different
subdirectories (for example the reco/<PassX>/ESD/ directories for different
<RunNumber > parent directories) may contain files with the same name but with
different content. Nevertheless, the GUID scheme (and the directory structure) makes
sure that these files can be distinguished.

To make local copies of files without creating the full directory structure locally (e.g. for
local calibration runs over a certain set of files), a macro was developed to stage the
requested data files either locally or to another ROOT supported storage area. Using
alienstagelocal.C will copy the files and rename them to more meaningful names,
which allows to distinguish them by their new filenames.

Each PbPb event was expected to have a raw data size of 12.5 Mb on average. The
file size limit of 2 Gb restricts the number of events to 160 per raw data file. Since
neither the ALTRO compression nor the Hough encoding will be used for now, the
event size will actually be a factor of 4 (2x2) larger, which means 40 events per raw
data file (or 50 Mb/event). A central event currently takes about 50 min to be processed,
while a typical minimum bias event takes 10 min on average. This means that it will take
6:40 h to reconstruct all the events of one raw data file. It is therefore not necessary to
group several raw data files together to produce ‘larger ESDs. As result, each
AliESDs. root file will correspond to one exactly raw file.

For pp events the expected size of 1 Mb/event is currently exceeded by a factor of
about 16 (16 Mb/event). One raw data file with a size limit of 2 Gb will therefore contain
125 events. Since it takes about 1 h to reconstruct 100 pp events, one raw data file will
be processed in about 1:15 h.

A typical data-taking run with a length of 4 h and a data rate of 100 events/s will
generate 360k PbPb (pp) events in 9000 (720 for pp) raw data files. The corresponding
ESD/ directory will therefore contain 9000(720)xn files. It is important to keep the
number n of output files small, by storing all necessary information in as few files as
possible.

4.4Files linked to from the ALICE File Catalogue?

‘All" available ALICE files will be handled (meaning registered and linked to) by the file
catalogue. In particular, this includes the following files/file types:

85/199

The ALICE Offline Bible

* raw data files,

¢ AliESDs.root files,

» AliIESDfriends.root files,
» ESDtags.root files, and
* AliIAOD.root files.

For different files/file types a different set of metadata tags will be added which contains
useful information of/for that specific file/file type

4.5Metadata

In the following, we will list metadata information that will be stored in the database.
Note that an actual query of the file catalogue (using the AlEn command
find <tagname>:<cond>) might contain more specific tags/tag names than
elaborated here. For example, some of the available information will be directly stored
in the directory/path structure (and only there; like the < RunNumber> and <Year>),
whereas other information can be ‘calculated’ from the metadata provided (e.g. the
month when the data was taken, by extracting this information from the run
start/stop time metadata).

4.5.1 Run metadata

tag name data format/possible values data
source

run comment Text log book
run type physics, laser, pulser, pedestal, simulation log book
run start time yyyymmddhhmmss log book
run stop time yyyymmddhhmmss log book
run stop reason normal, beam loss, detector failure, ... log book
magnetic field FullField, HalfField, ZeroField, DCS
setting ReversedHalfField, ReversedFullField, ...
collision system PbPb, pp, pPb, ... DCS
collision energy text, e.g 5.5TeV DCS
trigger class log book
detectors present bitmap: 0=not included, 1=included log book
in run
number of events log book
in this run
run sanity flag bit or bit mask, default 1=0OK manually

for reconstructed data:

tag name Data format/possible values data source

86/199

The ALICE Offline Bible

production tag reconstruction
production software library version reconstruction
calibration/alignment settings ideal, residual, full reconstruction

for simulated data:

tag name data format/possible values data source
generator Hijing, Pythia, ... manually
generator version manually
generator comments Text manually
generator parameters manually
transport Geant3, Fluka, ... manually
transport version manually
transport comments Text manually
transport parameters manually
conditions/alignment settings ideal, residual, full manually
detector geometry Manually
detector configuration manually
simulation comments Text manually

All this information will be accessible through the Config.C file as well. A link to the
specific Config.C file used for the production will be provided in each /
sim/<Year >/<ProductionType >/<RunNumber >/ directory.

The implementation of a ‘simulation log book’ is considered to be useful. It would serve
as a summary of the simulation effort and the information needed for the metadata
could be read directly from there.

4.5.2 File metadata

tag name data format/possible values data source
file sanity | flag bit: e.g. online/offline or available/not available; manual
default 1=online/available

Additional information about files is available from the file itself, so there is no need to
create special metadata.

Additional data is needed in order to store the files into the correct directories (see ‘Path
name specification’ above). DAQ will take care of that; they will store the files in the
proper location right away and — if necessary — create these new directories.

4.6Population of the database

The metadata database has to be filled with the values obtained from different sources,

87/199

The ALICE Offline Bible

indicated by the ‘data source’ descriptor in the tables given above. At the end of each
run, a process running within the shuttle program will retrieve the necessary information
from the DAQ log book, and the DCS to write them into the database. This will be done
in the same way the detectors retrieve their calibration data.

4.7Data safety and backup procedures

Since the filenames are meaningless by themselves and the directory structure is
completely virtual, it is very important to have a backup system or persistency scheme
in place. Otherwise, a crash, corruption or loss of the database results in a complete
loss of the physics data taken. Even though the logical files would be still available, their
content would be completely unknown to the user.

The currently implemented backup procedure duplicates the whole ALICE File
Catalogue and is considered a sufficient security measure.

88/199

The ALICE Offline Bible

5 AIliEn reference

5.1What's this section about?

This section makes you familiar with AliEn user interfaces and enables you to run
production and analysis jobs as an ALICE user using the AliEn infrastructure.

The first part describes the installation procedure for the application interface client
package gapi and the functionality of the command line interface — the AliEn shell
aliensh.

The second part describes the AliEn GRID interface for the ROOT/AIIROOT framework
and introduces you to distributed analysis on the basis of examples in batch style using
the AliEn infrastructure.

To be able to repeat the steps described in this HowTo, you must have a valid GRID
certificate and you must be a registered user within the AliEn ALICE VO. Information
about that can be found at

http://alien.cern.ch/twiki/bin/view/Alice/UserReqistration

PN
(ary
Nt

Workernodes G R I b / WwWWwW
VO Box h

File Catalogue

Task Queue ‘ ’
Storage e r

Software Management

Nivers?

Central Services

Figure 15: ALICE Grid infrastructure

5.2The client interface API

All user interactions with AliEn are handled using a client-server architecture as shown
in Figure 16. The API for all client applications is implemented in the library
I i bgapi Ul . Every client interface can communicate over a session-based connection
with an API server. The API server exports all functions to the client interface, which
are bridged from the AliEn PERL-UI via the AlienAS PERL - C++ interface script.

89/199

The ALICE Offline Bible

Figure 16: The AliEn interface structure

To use the shared library in a C++ program, just add to the source the line below and
link with - | gapi Ul .
#i ncl ude <gapi Ul . h>

5.3Installation of the client interface library package — gapi

The standard way to install the client interface package is to use the AliEn installer. The
source installation is explained for special use cases - you might skip that section.

5.3.1 Installation via the AliEn installer

« Download the AliEn installer from:

http://alien.cern.ch/alien-installer

using a browser or wget . Set the permissions for execution of the installer:
chnod ugo+rx alien-installer
e Run the installer:

.lalien-installer

» Select in the version menu the highest version number with the 'stable’ tag and
follow the instructions of the installer until you are asked, which packages to
install.

Select 'gshell - Grid Shell UI' to install the client interface and ROOT to get an
AliEn-enabled ROOT package and proceed.

Note: The installer asks you, where to install the packages. The default location is /
opt/alien. To create this directory you need ROOT permissions on that machine. If you
are not the administrator of that machine you can only install into your HOME directory
or a directory, where you have write permissions.

5.3.2 Recompilation with your locally installed compiler

AliEn comes with the CERN standard compiler (currently gcc 3.2.3). If you want to
compile applications with your locally installed compiler (different from AliEn's one) and
link against the API library, you have to recompile the API library with your compiler.

To do so, execute the script
[opt/alien/api/src/reconplile.api [<alien dir> [nodul es]]

The script recompiles the API library and installs over the binary installation in your
AliEn installation directory.

If you execute the script without arguments, your installation directory configured in the
installer will be detected automatically. If you want to recompile a different installation to
the one installed by the installer script, you can pass the installation directory as first
argument. If you add 'modules’ as the 2™ argument, also the PERL and JAVA modules

90/199

The ALICE Offline Bible

will be rebuilt. To compile the modules you need to install also the “client” package
using the alien installer.

After having recompiled successfully, you should set the variable GSHELL_GCC to the
path of your gcc executable (e.g. export GSHELL_GCC="whi ch gcc’).

5.3.3 Source Installation using AliEnBits

Create a directory to install the build sources e.g.:
nkdir $HOVE/ al i enbits/ ; cd $HOVE al i enbits/

RSync to the development HEAD

rsync -acvz--exclude=alien. conf. nk
rsync://alien.cern.ch: 8873/ rel eases/ HEAD/

or an older version e.g. v2-6:

rsync -acvz--exclude=alien. conf.nk
rsync://alien.cern.ch: 8873/ rel eases/ v2- 6/

Login in to the CVS with password 'cvs':
cvs -d :pserver:cvs@lisoft.cern.ch:/soft/cvsroot |ogin

Update your rsynced directory with the latest CVS:
cvs -d :pserver:cvs@lisoft.cern.ch:/soft/cvsroot update -dPA

Run the configure script and define the installation location:
./lconfigure--prefix=/opt/alien (or--prefix=$HOVE/ al i en)

Change to the api-client source directory:
cd $HOVE/ al i enbi t s/ apps/ al i en/ api

or the api-client-server source directory:
cd $HOVE/ al i enbi t s/ apps/ al i en/ api servi ce

Start the build:
make

AliEn Bits will download and compile every package, which is needed to build the API.
This includes the compilation of PERL and GLOBUS and will take about 1 hour. Install
the build:

make install

Now you have compiled everything that is used by the API package from sources on
your computer.

5.3.4 The directory structure of the client interface

The location of the client interface installation is (if not changed in the Installer or in
AliEnBits with the--pr ef i x option) under/ opt/al i en/ api .

The structure of the default installation is
e Jopt/alien/api/
e bin/

91/199

The ALICE Offline Bible

= aliensh
executable for the AliEn shell interface
There are no modification of the PATH or
LD _LIBRARY_PATH environment variables needed to

run the shell.
= gbbox

busy box executable to run arbitrary commands (we

will give a more detailed explanation later)
= alien_<cnd>

executables of alien commands outside aliensh (e.g.

from a tcsh)
e etc/

shell scripts defining auto-completion functions for the aliensh
e include/

= gapi_attr.h
C++ include file defining gapi file attributes

= gapi_dir_operations.h
C++ include file defining POSIX directory operations
like opendir, closedir etc.

= gapi_file operations.h
C++ include file defining POSIX file operations like
open, close, read etc.

= gapi_job_operations.h
C++ include file defining job interface operations like

submit, kill, ps etc.

= gapi_stat.h
C++ include file defining a POSIX stat interface

= gapiU.h
C++ include file containing the interface class for
command execution and authentication on a remote
apiservice server. This can be considered as the
lowest level interface and it is independent of AliEn.
Other include files encapsulate more abstract
functionalities, which already 'know' the AliEn
functionality.

= javal
java interface to libgapiUl , if installed
= |ibgapiU.a
= |ibgapiU.la
libtool library file
= |ibgapiU.so
link to a current version of the gapiUl shared library
= |ibgapi U.so.2

link to a current version of the gapiUl shared library
= |ibgapi U.so.2.0.2

a current version of the gapiUl shared library (the
version number might have changed in the meanwhile)

Additional files for the server

92/199

The ALICE Offline Bible

* sbhin/
= gapi server

server executable
e scripts/
= Local FS. pl
test interface script to be used by the gapiservice

executable
= AienAS .pl

PERL script interfacing from the C++ server to the

AliEn native PERL Ul
= gapi server. pl
startup script for the API server gapiserver

5.4Using the Client Interface - Configuration

A minimum configuration to use the API client is recommended, although the API client
works without PATH or (DY)LD_LIBRARY_PATH modifications. These modifications
are for user convenience to avoid typing the full executable paths. If you want to have

the executable of aliensh and other packaged executables in your PATH use:
export PATH=/ opt/alien/api/bin: $GLOBUS_LOCATI ON bi n: $PATH

5.5Using the Client Interface - Authentication

Session tokens are used for performance reasons for authentication and identification
to any API server. These tokens are similar to GRID proxy certificates (limited lifetime).
Additionally they are modified every time they have been used. Every token represents
one well-defined role, which you specify in the initialization of the token. It is issued by

the API server and shipped over an SSL connection to the client.

5.5.1 Token Location

The gapi library supports two methods for storing an authentication token:

e Store in memory

The token can only be accessed by one application. This method is used e.g. in

ROOT and will be explained later.
+ Store in a token file.
This method is used for the shell implementation aliensh.

In the following, we will discuss the handling of file-tokens.

5.5.2 File-Tokens

The file-token mechanism is implemented in three commands:
« alien-token-init

« alien-token-info

93/199

The ALICE Offline Bible

 alien-token-destroy

None of the commands touches your current user environment, i.e. they don't modify
your PATH or LD_LI BRARY_PATH environment variables.

5.6Session Token Creation

Session tokens are stored in the / t np directory following the naming convention:
/tnp/ gclient_token_${U D}

For security reasons, permissions on the token file are setto “-rw------ " for the
owner of the token.

There are three authentication methods for the APl service:
» using GRID proxy certificates
» using password authentication (by default disabled on ALICE servers)
e using AliEn job token

Note: It is always recommended to use a GRID proxy certificate for authentication.
Password Authentication and Job Token are described for completeness.

5.6.1 Token Creation using a GRID Proxy certificate — al i en-
token-init

To obtain a session token, you need a GRID proxy certificate. For this, you have to
execute al i en-token-init [rol e] tocontact one of the default API services and
to obtain a session token for this service the [r ol e] parameter is optional. If you don't
specify a role, your local UNIX account name ($USER) is taken as the role in the
session request. You can request the middle ware administrators to allow you to use
other roles than your personal identity, e.g. the al i pr od role for generic productions.

apiclient® pcapisernvol:~ [=][ol[x]|
[api-training] homelapiclient > Aoptfaliendapisbindalien—token—init peters

foptsaliendapi foptsaliendapirbin Joptdaliendapi

= Trying to connect to Server [0] httpiddpcapizervll,cern,chis3000 as User peters

Your identity: peters

Creatingiboken: fweomr sive s mias i e s Done

Your token iz walid untily Wed Jan 11 14346107 2006

[api-training] /homefapiclient > |

The list of default APl services is obtained automatically. The client tries to connect in a
well defined way to one of the services available, and to establish a session. The list of
available services is centrally configured.

If none of the (redundant) services are available, no token will be created.

Instead of using the automatic server endpoint configuration, you can force a specific
API server endpoint and role via the following environment variables:

 alien_APlI_HOST:

94/199

The ALICE Offline Bible

API server host name e.g. pcapi servO01. cern. ch

« alien_APlI_PORT:
API server information port, default 9000

 alien_APl _USER:
Role you want to request with your certificate in AliEn

« alien_APl_ VG
Virtual Organization. Presently this parameter is not used.

The client itself does not choose the lifetime of session tokens. It depends only on the
configuration of the API server you are connecting. al i en-t oken-i nit has an auto-
bootstrap feature:

e The first time you use this command, it will run the bootstrap procedure, which
will inform you about the creation of certain symbolic links etc.

« Ffyou move or copy a client interface installation to another directory, the
installation bootstraps itself (the first time, when you use the al i en-t oken-
i nit command).

« If you miss some of the required libraries, you will get a hint, how to proceed in
such a case.

Return Values ($7?):

« 0 Token successfully obtained
« 08 Bootstrap error — no permissions
e 99 No Token created — authentication failed

Note: if you have problems like the ones shown here, verify that you don't have the
environment variable X509_CERT_DIR set. In case you have, remove it! (unset
X509_CERT_DI Rin bash)

5.6.2 Token Creation using a password — al i en-t oken-i ni t

The procedure to create a token with a password is the same as with GRID proxy
certificates and is mentioned only for completeness. In a GRID environment all user
authentication is done using proxy certificates.

It is possible to configure an API service to authenticate via the PAM modules using
login name and password.

95/199

The ALICE Offline Bible

apiclient® pcapisernQl:—~ E”E”E
[api-training] homesapiclient > Aoptfaliendapisbindalien-token—init aliprod

foptialiendapi Aoptdaliendapisbin Joptdaliendapi

=» Trying to comnect to Server [0] http:/dpcapizervil,cern,ch:3000 as User aliprod

Fazzword:

Your identity: aliprod

Creating LoKEN L oussrrsssrrsssrrsssrsssrasssrassrras Dione

Your token iz valid untils Wed Jan 11 14:439:05 2006

[api-training] shomesspiclient > JJ

One has to specify the account name as the [rol e] parameter to al i en-t oken-
init, and you will be prompted to enter a password. The client uses an SSL
connection to communicate the password, which is validated on the server side using
the PAM library. Afterwards, the password is immediately purged from client memory.

5.6.3 Token Creation via AliEn Job Token — al i en-t oken-

I nit
A third authentication method using job tokens exists: if jobs are run via the AliEn
TaskQueue, you can obtain a token using the AliEn job token known in the environment
of your GRID batch job. In this case you don't need to specify any [rol e] parameter.

The role is mapped automatically according to the AliEn job token found in your job
sandbox and mapped on server-side using the AliEn authentication service.

5.6.4 Manual setup of redundant API service endpoints

It is possible to overwrite the central configuration and to specify your own list of API
service machines via the environment variable al i en_API _SERVER LI ST e.g.:

export alien_APl _SERVER LI ST="host 1: 9000| host 2: 9000| host 3: 9000"

5.7Checking an API session token —al i en-t oken-i nfo

Similar to gr i d- pr oxy- i nf 0 you can execute al i en-t oken-i nf o to get
information about your session token.

apiclient® pcapisens0l:~ (][] [¢]
[api-training] homesapiclient > Aoptfaliendapisbindalien-token—info

Hozt. poapizervll, cern,ch

Port. 9001

Port2 9000

Uszer aliprod

Pud DEDdWOOCNZELTED =Y EZyg

Mokce BY 1232 78 120 106 128 g0 121 o0 15000 0595 "
51D 45
Ercr Rep,t 0

I A I T I TR A

Expires : lled Jan 11 14:49:08 2006
Token iz still walid!
[api-training] shomesspiclient >]

e« Host host name of the API server, where this token is to be used
e Port communication port for remote command execution

« Port2 information port, where the initial authentication methods and
protocol versions are negotiated

96/199

The ALICE Offline Bible

e User role associated with this token

e Pwd random session password used in the security scheme
* Nonce- dynamic symmetric CIPHER key

« SID assigned session ID by the API server

* Encr. Rep. 0 specifies, that all service replies are not encrypted. 1
specifies, that service replies are fully encrypted.

Note: the default operation mode is to encrypt all client requests, while server
responses_are not encrypted.

» Expires Local Time, when the token will expire

After the token has expired, the last line of the command will be “Token has expired!”, in
case it is valid: “Token is still valid!” If no token can be found, the output will be only: “No
token found!”

Return Values ($7?):

e 0 Token is valid
e 1 Token is not valid
« 2 No Token found

5.8Destroying an APl session token —al | en-t oken- dest r oy

al i en-t oken-dest r oy is used to destroy an existing session token.
Return Values ($?):
- 0 Token has been removed

« 100 No Token to be removed

5.8.1 Session Environment Files

The al i en-t oken-i ni t command produces two other files in the / t nmp directory.
« /tmp/gclient_env_$UID

You can source this file, if you want to connect automatically from an
application to the same API server without specifying host and port name in the
code. This will be explained in detail later.

* /tmp/gbbox_$UID_$PID

This file keeps all the 'client-states' which are not directly connected to
authentication or session variables (which are written to the token file): for the
moment only the CWD is stored. This file is bound to the PID of your shell to
allow different CWDs in different shells.

The “client-state” file is configured automatically in aliensh via the environment variable
GBBOX_ENVFI LE.

97/199

The ALICE Offline Bible

5.9The AliEn Shell — aliensh

The aliensh provides you with a set of commands to access AliEn GRID computing
resources and the AliEn virtual file system. It can be run as an interactive shell as well
as for single-command and script-execution.

There are three command categories:
» informative + convenience commands
e Virtual File Catalogue + Data Management Commands

» TaskQueue/Job Management Commands

5.9.1 Shell Invocation

5.9.1.1Interactive Shell Startup/Termination

The shell is started invoking the 'aliensh' executable as seen in the following example:

alientest® pcarda0?: -~ [=][o][x]
[poardanZ] Ahomesalientest > aliendapisbindaliensh
[aliemsh 2.1.4 (C) ARDASAlice: Bndreas.Joachim,PetersBoern,cheDerek,FeichtingerBcern,chl

* Welcome to the ALICE YO at alien:d/poapiservil,cern,chil0000
* Running with Server Y2,1.3

AliEn v,2-12 haz been released,

aliensh:[alice] [1] falicefcern,chiuser/p/petersd >l

The shell advertises the present protocol version used on client-side (aliensh 2.0.0 in
this case) and displays the server message of the day (MOTD) after invocation.

You can execute commands by typing them into the shell and invoking the execution
with the ENTER key. In fact, aliensh is a special featured bash shell.

Shell return values are all constructed following common practice:
Return Values ($?):

« 0 Command has been executed successfully

« 1=0 Command has produced “some” error

Most of the shell commands provide a help text, if executed with a “-h” flag. You can
leave the shell with the “exit” command:

98/199

The ALICE Offline Bible

ez

alientest® pcarda0?: -~ [=][o][x]
[aliemsh 2,1.4 (C) ARDA/Alice: Brdreas.Joachim,PetersBoern,cheDerek,FeichtingerBoern,chl

* Welcome to the ALICE WO at alien:d/poapiservil,cern,chil0000
* Burning with Server VY2,1.3

AliEn w,2-12 has been released,

alienshi[alice] [1] /alice/cern,chiuser/p/peters/ Fexit

exit
[pcardad?] ‘homesalientest > [l

5.9.2 Shell Prompt

The shell prompt displays in the 1* bracket the VO name, the 2" is a command counter.
The right hand side of the prompt displays the user's CWD. If the shell is invoked the
first time, the CWD is set to the user's home directory. Otherwise the CWD is taken
from the previous session.

5.9.3 Shell History

The shell remembers the history of previously executed commands. These commands
are stored in the history file $HOVE/ . al i ensh_hi st ory.

5.9.4 Shell Environment Variables

aliensh defines the following environment variables:
e alien_ APl _HOST
« alien_APl _PORT
« alien_ APl USER
e alien_APlI_VO
+ MONALI SA NAMVE
Mona Lisa Site Name e.g. “CERN”
e MONALI SA_HOST
Responsible Host running a MonALISA Server
+ APMON_CONFI G
Responsible MonALISA Server to receive ApMon UDP packets
« HOMVE
Your virtual AliEn home directory

* GBBOX_ENVFI LE
Environment file keeping shell state variables (e.g. C\D)

« GSHELL_ROOT
Installation path of the API client package

5.9.5 Single Command Execution from a user shell

You can execute a single command by invoking the shell with the command as the first
parameter:

99/199

The ALICE Offline Bible

apiclient® pcapiserns)l:- (=]][]
[peapizervil] Ahomedapiclient > Aoptfaliendapisbindaliensh —c pud
falice/cern,ch/user/pdpeters/soripts/

[poapizerwil] shomedapiclient > IP

Return Values ($?):
« 0 Command has been executed successfully
o 1 Command has been executed and returned an error
o 127 Command does not exist and could not be executed

e 255 Protocol/Connection error

5.9.6 Script File Execution from a user shell

You can execute an aliensh script by giving the script filename as the first argument to
aliensh. Local script files have to be prefixed with 'file:', otherwise the script is taken
from the AliEn file catalog!

apiclient® pcapiserv0l:~ E”E”E
[poapiserwil] fhomedapiclient > foptlaliendapisbindaliensh File:dtmpdaliensh-script

falicecern, ch/users/ps/peters/scriptas

exit

[peapizervil] Ahomesapiclient >

1 I

The final line of the script output 'exit' is produced, when the aliensh terminates and is
not part of the user script.

Return Values ($7?):
« 0 Script was executed successfully and returned 0
e 1 Script was executed and returned != 0
o 127 Script does not exist and could not be executed

« 255 Protocol/Connection error

5.9.7 Script execution inside aliensh “run”

If you want to source a script which is stored in the file catalogue or on the local disk,
you can use ‘run <filenane>" for a file in the catalogue or “run
file:<filename>" for a file on your local disk. The known 'sour ce' command
sources only local files.

5.9.8 Basic aliensh Commands

whoami
Print the user's role on STDOUT.
Return Values ($?):
« 0 Successfully executed

e 255 Protocol/Connection error

100/199

The ALICE Offline Bible

clear
Clear your terminal window
pwd
Print the cwd on stdout
Return Values ($?):
« 0 Successfully executed
o 255 Protocol/Connection error

gbbox [-d] [-h] [-f <tag1>,[<tag2>]..]

Busy Box command, used to execute most of the aliensh commands.
Example: “whoami” executes in fact “gbbox whoami”

alientest® pcarda0?:—- |=o][x]

aliensh:[alice] [1] falicescern,chiuzer pipeterss uhoami
peters

aliensh:[alice] [2] Falicescern,chiuser/pipeterss obbox whoami
peters

alienzh:[alice] [3] falicedcern,chifuzer/p/petersd 3

[

The API protocol returns always four streams in the response:
« STDOUT
+ STDERR
* Results Structure (Array of Key-Value pairs)

* Misc. Hash (Array of Key-Value pairs for environment variables
etc.)

The shell prints only the STDOUT and STDERR stream on your terminal. With
the “-d” option, you get a dump of all returned streams:

alientest® pcardal2; - [=][] 3]
alienshi[alice] [3] falicescern.chfuserdp/peterss robbox -d whoami
:::::::::::::::}Stream stdnut

[Cal 0]: rpeters

==============="Stream stderr
[Col 0] >

===============(Strean result_structure
[Col 0]z [Tag: __result__] =» »1<

e T misc_hash
[Cal 0]z [Tag: pud] =» »falicedcern,chiuser/plpetersd<

vl @lienshi[alice] [4] Aalice/cern,chiuzer/p/peterss 2l

The “-0 <tag>" option prints only the tag <tag> of the result stream to your
terminal. For Boolean functions the return value is returned with the tag name

_result__ ™

101/199

The ALICE Offline Bible

alientest® pcarda0?: -
aliensh:[alice] [4] falicedcern,chiuserd/pspeterss/ »gbbox —o __result__ whoami

1

alienshi[alice] [5] falice/cern,chiuser/p/peterss >

DS

This command is very useful to make a quick check, what a busy box
command returns - especially with respect to the API library, where you can
easily access directly any tag in the result structure.

Return Values ($?):

cd [<directory>]

0
1

127

255

Command has been executed successfully
Command has been executed and returned an error
Command does not exist and could not be executed

Protocol/Connection error

change to the new working directory <directory>. If the directory is unspecified,
you are dropped into your home directory. < directory> can be a relative or
absolute PATH name. Like in standard shells 'cd —' drops you in the previous
visited directory — if there is no previous one, into your home directory.

Return Values ($?):

Is [-laF|b|m] [<directory>]

0
1

255

Directory has been changed
Directory has not been changed

Protocol/Connection error

list the current directory or <di r ect or y>, if specified.

“

list in long format

the long format uses colour highlighting

blue

red

a

n_bu

m

“_ Fu

-n

plain files
directories
JDL files

list also hidden files starting with “.”
list in guid format (guid + name)
list in md5 format (md5 + name)

list directories with a trailing “/”

switch off the colour mode for the long format

Note: if you want to use the | s function in scripts and parse the output, you
should always add the -n flag to switch off the colour mode for the '-I' long

format.

102/199

The ALICE Offline Bible

gzl

alientest® pcardal?: -
aliensht[alice] [1] Aalicespackages/AliRoots >l=

4,.02,07

old
post_inztall
post_inztall”
wd—02-Reyu-01
wd—03-03
wd—013-04
wd=04-Rey-04
wd—04-Fey-05
wi—04-Reyw-0E
wd—04-Rew-07
wd=d-Reyw—a
wd—05-013

aliensh:[alice] [2] falice/packages/AliRoots >

alientest® pcardal2; -
alienshilalice] [2] Aalice/packages/AliRoots »ls -la

drwxr—xr—x
druxr—xr—x
druwxr—xr—x
druxr—mxr—x
B T) i
B T)
drur—xr—x
druxr—xr—x
drwxr—xr—x
druxr—xr—x
druwxr—xr—x
drwxr—xr—x
drur—xr—x
druwxr—xr—:

druxr—xr—u

aliprod =2
admin admin
aliprod z2

admin admin
adminzzl unknown
admin admin
admin admin
admin admin
admin admin
admin admin
adminszl adminzsl
adminzzl adminzsl
adminzz] adminzsl
adminzzl adminzsl

adminzz]l adminzs]

0
0
0
0
437
a06

0
0

Apr 19 17139
Apr 19 17:39
Apr 19 17:39
Apr 19 17:39
Jul 12 10:48
Jul 12 10:4E
Apr 19 17129
Apr 19 17:39
Apr 19 17139
Jun 19 16340
Jul 03 15:31
Jul 28 14:20
Aug 11 15:40
Sep 08 14:43
Aug 30 0102

lienzh:[alice] [3] /alicespackages/AliRoot/ [

4+

4,02,07

old
post_inztall
post_inztall”
wd=02-Fey-01
wd-03-03
wd=03-04
=04 -Fey-04
wd-04-Rew-05
wd-04-Reu-05
=04 —Rey-07
wi=04-Rey-08
wd=05-03

alientest® pcarda0z: -
alienshi[alice] [5] Aalice/packages/AliRoots *l= -b

E1BYDE7C-1182-110E-B34E-00I0ETBES1CE
B1ECS280-CAE0-110A-819C-00EQS1299A1E
alienzh:[alice] [6] Falicespackages/AliRoots >
[

falices

falicespackages Al iRoot post_install
iackagesfﬁliRDthstt_install”

alientest® pcarda02: -
alienshi[alice] [9] Aalicespackages/AliRoots >ls -m post_install

ci8b43def e0031467 2737 F 2dd33F 701

falicespackages/AliRoot/post_install

alienshilalice] [10] AalicespackagesAliRoots >
[

Return Values ($?):

+ 0

103/199

Directory has been listed

The ALICE Offline Bible

o 1 Directory has not been listed
« 255 Protocol/Connection error
mkdir [-ps] <directory>
create the directory <directory>
» “p”recursively creates all needed subdirectories

+ “-g”silences the command — no error output

alientest® pcarda0?: -
aliensh:[alice] [2] Aalicedcern,chiuzer/p/peterss »ls exampledir

[=[a[x]

Jan 11 11:03:31 info falicedcern,chi/uzers/p/peterz/exampledir no such file or directory

aliensh:lalice] [3] Falicedcern,chiuserd/pspeterss/ recha $7
1
alienshilalice] [4] Falicedcern,chiuserdpipeters Pmkdir exampledir
alienshilalice] [5] Aalicedcern,chiuser/pfpeters »echo $7

]
aliensh:[alice] [E] falicedcern,chiusersp/peters/ »ls -la exampledir
druxr-xr-x peters zZ2 0 Jan 11 11:03 3

drwxr-xr-x peters zZ 0 Apr 19 17:38 _

aliensh:[alice] [7] falice/cern,chiuzer/p/peterss 3

Return Values ($?):
0 Directory has been created
e 1 Directory has not been created
« 255 Protocol/Connection error

rmdir [-r] <directory>

remove the directory <directory> or everything under the directory tree

<directory>

* “r’recursively removes files and directories

alientest® pcarda0?: -

aliensh:[alice] [11] Falicedcern,chiuser/p/peters! »rmdir exampledir
aliensh:lalice] [12] Aalicedcern.chiusers/p/peters’ »echo $7

0

aliensh:[alice] [13] Falicedcern,ch/user/pipeters’ »ls -la exampledir
Jan 11 11:04:46 info falicedcern,chi/uzers/p/peterz/exampledir no such file or directory
alienshi[alice] [14] falice/cern,chifuser/p/peters’]

DS

Please note that, if you use the '-r' flag, you remove only entries from the file
catalogue, but not their physical files on a mass storage system. Use ‘erase’ to

remove files physically.

5.9.8.1Data Management Commands

cp [-s][-d] [-v] [-m][-n] [-t <time>] [-f] [-i <infofile>]<src> <dst>

copy file(s) from <src> to <dst>: This command always produces a physical
copy of a file. It does not only copy an entry in the catalogue to a new

name!

104/199

The ALICE Offline Bible

<src> and <dst> have to be given with the following URL-like syntax:
[alien:|file:] <path]|dir>] @SE>]

Exanpl es:

"alien:*.root" specifies all ".root' files in the AliEn CWD

"alien:/alicelcern.ch/" specifies the “/alice/cern.ch/
directory in AliEn

"file:/tmp/nyfile.root" specifiesthe local file
'/tmp/myfile.root’ on your computer

"myfile.root @\LI CE: : CERN: : Cast or 2" specifies the file
“myfile.root” in the CWD in AliEn in the ALICE::CERN::Castor2
Storage Element

If a file has several replicas and you don't specify a source SE, the closest SE
specified in the environment variable al i en_cl ose_SE is taken. If this is not
set, the closest one to your client location is configured automatically..

If you don't specify a target SE, the SE specified in the environment variable
al i en_cl ose_SE is taken

If <src> selects more than one file (e.g. ' *. root') <dst> must be a directory —
otherwise you will get an error

If <src> is a directory (e.g. '/ t np/ mydi r/ ') <dst> must also be a directory —
otherwise you will get an error

Options:

-S be silent, in case of no error, don’t print anything

“d” switch on debug output. This can be useful to find reasons
for command failures

-V more verbosity — print summaries about source,
destination, size and transfer speed

-m MD5 sum computation/verification

local to grid file : compute the md5 sum of the local file and insert it
into the catalogue. This is turned “on” by default for local to grid file
copy operations

grid to local file : verify the md5 sum of the downloaded file

local to local file : flag ignored

grid to grid file : recompute the md5 sum of the source file and enter it
in the catalogue with the destination file

“n new version — this option is only active, if the destination is
a file in AliEn: if the destination file exists already, the existing
destination is moved into the subversions directory (see following
example) and labeled with a version number starting with v1.0. If
the new version to be copied has the same md5sum, the file is not

105/199

The ALICE Offline Bible

copied at all!

Example

® If you overwrite a file named “myfile” with the “-n” option, the
original “myfile” is moved to “.myfile/v1.0” and “myfile” contains
the last copied file. If you repeat this, “myfile is moved to
“.myfile/v1.1”
etc.

“-1” <seconds> specifies the maximum waiting time for all API
service requests (which are executed within the copy command).
The default is 10 seconds.

“f “force” transfer. This sets the first connection timeout to 1
week and the retry timeout (if a connection is interrupted during a
transfer) to 60 seconds. The default is 15 s for the first connection
timeout and 15 seconds for retries. In interactive shells however, it
is more user-friendly, if a copy command times out automatically.

“i <file>" writes an info file locally to <file>, containing the <src>
and <dst> parameters used, e.g. you can get the information, from
which SE a file has been read, if you didn’t specify it in <src>.

Return Values ($7?):

0 File(s) copied successfully or you have just requested the
“-h” option for the usage information

1 Directory has not been listed

20 access to the source file has been denied

21 access to the destination file has been denied

22 timeout while getting an access envelope

23 you tried to copy multiple files, but the destination was not
a directory

24 could not create the target destination directory when

copying multiple files

25 copy worked, but couldn’t write the info file given by “-i
<infofile>".
30 the md5 sum of the source file is not “0” and the md5sum

of the downloaded file differs from the catalogue entry.
200 Control-C or SIG Interrupt signal received

250 an illegal internal operation mode has been set (can
happen only in “buggy” installations/setups)

251 <src> has not been specified

252 <dst> has not been specified

106/199

The ALICE Offline Bible

« 2583 you miss the xrootd xcp or xrdcp program the first place to
search for is in your environment. If it can’t be found there, it tries to
find it in your APl installation directory or one level (../) higher

+ 255 the copy operation itself to/from the SE failed (xrdcp
failed)

Examples:

» copy local to AliEn file:

alientestd® pcarda0?; -
aliensh:[alice] [5] Aalicedcern,chifusersasaliprod/demas »cp File:/tmp/testfile testfile

[xrootd] Total 0,00 ME | | 100,00 ¥ [inf HbAs]
aliensh:[alice] [E] Falicescern,chiuzerdasaliprod/dena’ >
11

® copy AliEn to local file:

alientest® pcarda0?; - L=][]]

alienshilalice] [20] Aalicedcern.chiuser/asaliprod/dema’ >cp testfile file:stmp/
[xrootd] Tatal 0,00 HE | I ao0,00 # [0,0 Mb/s]
aliensh:lalice] [21] Aalicedcern,ch/usersasaliprod/dema’ Fecho $7

0

aliensh:[alice] [22] falicedcern,chifuser/alaliprod/demos |

[

® copy local to AliEn file with verbose option:

alientestd® pcardad?: -
alienszh:[alice] [9] Aalicecern,chiuserdadal iprod/denas >cp —v filetdtmpstestfile testfil

=

[Thu Jan 11 11:07:34 2007] [INFO] Initializing destination addresses & ports:

[Thu Jan 11 11:07:34 20071 [INFO] Adding destination host: 137.138.99.136 - port 3354
[Thu Jan 11 11:07:34 20071 [INFO] Dizabling job monitoring. ..

[Thu Jan 11 11:07:34 2007] [IMFO] Dizabling system monitoring...

[Thu Jan 11 11:07:324 2007] [IMFO] Setting general information monitoring to false

[Thu Jan 11 11:07:34 2007] [INFO] Dizabling job monitoring, ..,

[xrootd] Total 0,00 ME | | 100,00 & [inf Hb/s]

[wrdep]

[xrdcp] # Source Mame : Jtmpltestfile

[xrdcp] # Destination Mame + root:A S lxgate28, cern, chil094/ Yal icescern, chiuserfalda
liprod/demostestfile

[xrdcp] # Data Copied [bytes] + 33

[wrdep] # Realtime [=] £ 0, 005000

[xrdep] # EFf.Copy, Rate[Mbrsz] + 0L O0BE00

[xrdcp]

alienshilalice] [10] Aalicedcern.ch/usersasaliprod/demas >

107/199

The ALICE Offline Bible

® copy local to existing AliEn file creating new version:

alientestd pcarda2: - [=][o][>]
alienshi[alice] [1] rfalicedcern.chfuserdasaliprod/demncs’ »1s —la testfile

B[1F %t s aliprod =2 33 Jan 11 11:07 testfile

alienshi[alice] [2] Falicedcern,chfuserdasaliprod/demcs >cp —n filej /tmpAftestfile testfil
e

[xrootd] Total 0,00 ME | I 100,00 % [inf Mbrs]

alienshilalice] [3] Falicescern.chifusersasfaliprodsdencs >l —la .testfile

drwxr—xr—:x aliprod =2 0 Dec 12 10:54 "

drwxr—xr—x aliprod z2 0 Dec 12 10:54 i

—F W aliprod =2 33 Jan 11 11:08 wl, 0

alienshilalice] [4] falicedcern,chfuserdasaliprod/denos >cp —n filet /tmpsftestfile testfil
=

[xrootd] Total O,00 ME | | dod, 00 ¥ [inf Mbe=s]

aliensh:il[alice] [5] Falicerscern.chdfusersasaliprodidemos’ »ls —la .testfile

drwxr—zxr—x aliprod =2 0 Dec 12 10:54 +

drwxr—xr—:x aliprod =2 0 Dec 12 10:54 =

B 11 ™t aliprod =2 33 Jan 11 11:08 wl, 0

—P WX —HE =X aliprod =2 24 Jan 11 11:10 wil, 1l

alienshilalice] [B] “alicedcern,chiusersasaliprodsdencs >0

® copy AliEn to local file — write copy information file:

alientestd® pcarda0?; -

aliensh:[alice] [20] Falicedcern,chfuserdasaliprodsdema’ »cp -i Atmpstestfile,info testfi
le filei/tmpstestfile
[xrootd] Total 0,00 MB | I 100,00 ¥ [0,0 Mb/s]
aliensh:[alice] [21] falicedcern,chiuserdasaliprod/dema’ cat AFile:/tmpstestfile,info
SRC-ARG 1 testfile
SREC-NAME 1 Falicedcern,chifuser/afaliprod/demo/testfile
SRC-PATH 1 testfile
SRC-PROTOCOL t alient
SRC-5E 1 Alice;:CERM: 1scratch
SEC-MODE + GRID
SRC-MDG + T13680dZ3a806f FFEFE45b1949d3F BT
DI5T-ARG 1 filet/tnpftestfile
DST-NAME t Stmpdtestfile
DIST-PATH 1 file:/tmpstestfile
DST-PROTOCOL 1 file:
DST-SE + ALICE::CERM: :CASTORZ
DST-HODE + LOCAL
D5T-HOG T OGO
_|aliensh:[alice] [22] falicedcern,chiusers/asaliprod/denc’ >l
I

® copy to a specific AliEn storage element:

alientest® pcarda0?:~

alienshi[alice] [10] /falicescern.chiuser/a/aliprod/demos »ocp file:/tmp/testfile testfile@ALICE::CERM::scratch
[xrootd] Tatal 0,00 WE |====================| 100,00 # [inf Hb/z]

aliensh:[alice] [11] /alice/cern,chiuser/a/aliprod/demo/ cat testfile

Thiz iz an AliEn Howto Testfilel

aliensh:[alice] [12] falice/cern,chiuser/a/aliprod/dema’ ¥

rm [-s] [-f] <file>
remove the entry <file> from the file catalogue
o g - be silent — don’t print ERROR messages!
o - succeeds even if the file did not exist!
Return Values ($?):

e 0 File has been removed

108/199

The ALICE Offline Bible

e 1 File could not be removed

o 252 <file> parameter missing

« 255 Protocol/Connection error

alientest® pcarda0?: - [=][]]
aliensh:lalice] [27] Aalicedcern.ch/usersasaliprod/dema/ »ls testfile
testfile

aliensh:lalice] [28] Aalicedcern.chiusersasaliprod/demas »rm testfile
alienshilalice] [29] Aalicedcern.chiusersadaliprod/demos >ls testfile
Jan 11 11:14:46 info salicedcern,chfuzersadfal iprodsddemostestfile no such file or direc

tory
aliensh:[alice] [30] falice/cern,chiusersadaliprodsdemas |

cat <file>

print <file> to STDOUT. <file> has an URL-like syntax and can reference an
AliEn or local file:

o “cat file:/tmp/nyfile.txt”-printthe local file
“/tmp/myfile.txt”

o “cat nyfile.txt”-printthe AliEn file “myfile.txt” from the CWD

+ “cat alien:/alice/nyfile.txt”-printthe AliEn file
“/alice/myfile.txt” (the protocol “alien:” is optional from within the
shell).

Return Values ($?):
« 0 File has been printed with “cat”
o 1 File could not be printed with “cat”
o 246 the local copy of the file could not be removed

« 250 an illegal internal operation mode was set (can happen
only in “buggy” installations/setups)

« 252 <file> parameter missing
« 255 Protocol/Connection error
more <file>

use “more” to print the file <file> on STDOUT. <file> has an URL-like syntax
and can reference an AliEn or local file:

e “nore file:/tnp/nyfile.txt”-printthe local file
“/tmp/myfile.txt”

« “nore nyfile.txt”-printthe AliEn file “myfile.txt” from the CWD

* “nore alien:/alice/nyfile.txt”-printthe AliEn file
“/alice/myfile.txt” (the protocol “alien:” is optional from within the
shell).

Return Values ($?):

« 0 File has been printed with “more”

109/199

The ALICE Offline Bible

e 1 File could not be printed with “more”
246 the local copy of the file could not be removed

« 250 an illegal internal operation mode was set (can happen
only in “buggy” installations/setups)

« 252 <file> parameter missing
e 255 Protocol/Connection error
less <file>

print the file <file> to STDOUT. <file> has an URL-like syntax and can reference
an AliEn or local file:

e “less file:/tnmp/ myfile.txt”-printthe local file
“tmp/myfile.txt”

+ ‘“less nmyfile.txt”-print AliEn file “myfile.txt” in the CWD

* “less alien:/alice/nyfile.txt”-printthe AliEn file
“/alice/myfile.txt” (the protocol “alien:” is optional from within the
shell).

Return Values ($?):
« 0 File has been printed with “less”
o 1 File could not be printed with “less”
o 246 the local copy of the file could not be removed

« 250 an illegal internal operation mode was set (can happen
only in “buggy” installations/setups)

« 252 <file> parameter missing
« 255 Protocol/Connection error
edit [-c] <file>

edit local or AliEn files using your preferred editor. The file <file> is copied
automatically into the /tmp directory, and you work on this local copy. If you
close your editor, the file is saved back to the original location, if you have
modified it. The default editor is “vi”. You can switch to another editor by setting
the environment variable EDI TOR:

+ forvim: EDITOR="vim"

» foremacs: EDITOR="emacs" or "emacs -nw"

+ for xemacs: EDITOR="xemacs" or "xemacs -nw"
» for pico: EDITOR="pico"

Note: Change this setting in the local aliensh rc-file $HOVE/ . al i enshrc !
<file> has an URL-like syntax and can reference an AliEn or a local file:

o “edit file:/tnmp/nyfile.txt”-editthe local file

110/199

The ALICE Offline Bible

“/tmp/myfile.txt”
« ‘“edit nyfile.txt”-editthe AliEn file “myfile.txt” in the CWD

e “edit alien:/alice/nyfile.txt”-editthe AliEn file
“/alice/myfile.txt” (the protocol “alien:” is optional from within the
shell).

e “edit alien:/alice/nyfile.txt@A\LICE:: CERN: : Tnp” -
edit the AliEn file “/alice/myfile.txt”. The file is read preferably from
the SE “ALI CE: : CERN: : Tnp”, if this is not possible from another
“closest” SE. The file will be written back into
“ALI CE: : CERN: : Tnp” .

AliEn files are per default written back into the same storage element, unless
you specify a different one by appending “@<SE-Name>" to <file>.

Every modified AliEn file is saved as a new version in the file catalog. See the
“cp -v” command for information about versioning.

Of course, you can only edit files that exist. If you want to edit a new empty file
use:

» “-c” create a new empty file and save it to <file>. If <file> is a local
file and already exists, it is overwritten with the newly edited file. If
<file> is an AliEn file and exists, it is renamed to a different version
and your modified version is stored as <file>

» “-h”: print the usage information for this command
Return Values ($?):
« 0 File has been edited and rewritten, or the “-h” flag

o 1 File could not be written back. You get information
about your temporary file to rescue it by hand.

« 246 the local copy of the file could not be removed

« 250 an illegal internal operation mode was set (can happen
only in “buggy” installations/setups)

o« 252 <file> parameter missing
erase <file>

remove physically all replicas of <file> from storage elements and the catalogue
entry

Return Values ($?):
« 0 File has been erased
e 1 File could not be erased

e 255 Protocol/Connection error

111/199

The ALICE Offline Bible

alientest® pcarda0z: - =[]]

alienshilalice] [3] Aalicedcern,chéuserdasaliprod/demas Ferase testfile
aliensh:[alice] [4] Aalicedcern.chéuserdasaliprod/demos recho $7

0

alienshi[alice] [5] Aalice/cern,ch/user/asaliprod/demcs =[]

purge <file>|<directory>
with <file> parameter: removes all previous versions of <file> except the latest

with <directory> parameter: same as above for each file contained in
<directory>

Return Values ($7?):
« 0 File has been purged | directory has been purged

e 1 File or Directory could not be purged — see output
message for details

o 255 Protocol/Connection error
whereis [-1] <file>

list all replicas of file <file>. It includes the GUID, the TURL and the SE name.
« “I"list only the names of the SEs and the GUID
» “-h” print the usage information

Return Values ($?):
+ 0 Command successful
e 1 Command failed
+ 255 Protocol/Connection error

Example:

* locate a file on SEs only:

alientest® prarda02:-- [=][o][x]
alienshi[alice] [15] /alicefcern.chifusersasaliprod/dema’ Fuhereiz -1 testfile
Jan 11 11:18:068 info The file Aalicefcern,ch/usersasaliprod/demostestfile is in
Jan 11 11:18:06 info The guid iz CH301070-A1RC-11DB-ACEC-OOOEAE343EEL
Alice::CERN: tscratch

aliensht[alice] [1E] /alicescern,ch/usersasaliprod/demos >
{

* Jlocate a files GUIDs/TURLs and SEs:

alientest® prarda0?:-- [=][a][x]
alienshi[alice] [14] Jalice/cern,chiuserda/aliprod/demo’ uhereiz testfile
Jan 11 11:17:54 info The file Afalicedcern,chiéusersasaliprod/demostestfile iz in
Jan 11 11:17:04 info The guid i= CH301070-A1RC-11DB-ACEC-0O0EAE343EEL

Alicey:CERM: tzcratch roott/faliens3, cern,ch:l094//datasse/al icescern, ch/users/a/al iprod/demo/ testf i
le/c930L070-a150-11db-acbo-000eaE343061

alienshil[alice] [15] /alice/cern.chiuser/a/aliprod/denc’ >l
1|

112/199

The ALICE Offline Bible

» advanced usage: use the busy box command, to print only one
output field of the command:

alientest® pcardad2;-- B=1E3]

aliensht[alice] [16] /alicefcern.chifusersasaliprod/dema’ »gbbox -0 se whereis testfile
Alice: ;CERN: tacratch

alienshilalice] [17] /alice/cern.chiuser/a/aliprod/denc’ >l

mirror <lfn> <se>

If you want to replicate files from one SE to another, you can use the mirror

command. <lfn> is the file you want to replicate, <se> is the target storage
element.

Return Values ($7?):
+ 0 Command successful
o 1 Command failed
« 255 Protocol/Connection error

df [<SE-name>]
Report the disk space usage of the default SE or <SE-name>
Return Values ($?):
e 1 in any case

find [-<flags>] <path> <fileName|pattern> [[<taghame>:<condition>] [[and|or]
[<tagname>:<condition>]]*]

helps to list catalogue entries according to certain criteria. The search is always
tree-oriented, following the hierarchical structure of the file catalogue (like the
UNIX find command).

The simplest find syntax is :

find /alice/cern.ch/demo/data *.root

" alientest® pcarda02:~

alienzhi[alice] [17] /alicescern,chifuzerdasaliprod/deno’ »Ffind /alicedcern,chi/demos/data *, root
falicescern,chddemo/data /0115, 00108, miniesd, root
falicescern.ch/demo/data/ 0115, 00156 ,miniesd, root
falicescern,chi/demo/data /0115, 00229, miniesd, root
aliensh:[alice] [18] falicescern.chiusersasaliprod/dena’ [}

Use the ‘%’ or the *’ character as a wildcard. You can switch on the summary
information with the '-v' flag:

~ alientest® pcarda02:-

alienshi[alice] [18] Aalice/cern,chfuserdasaliprod/demo >Find -v /alicedcern,ch/demo/data *,root
Jan 11 11:19:22 info Doing a find in directory Aalicefcern,ch/demosdata for filez with name '¥,root’
falicescern,chi/demos/data/ 0115, 00108, miniesd, root

falicescern,ch/demo/data/ 0115 00156 ,miniesd, root

falicescern,ch/demo/data/ 0115, 00229, miniesd, root

2 files found

alienshilalice] [19] /alicedcern,chiuser/asaliprod/denc >
L

Depending on your needs you can also select, which information you want to

113/199

The ALICE Offline Bible

print per entry using the '-p <field1>[,<field2>[,<field2>...]]' option. E. g. :

" alientest@ pcarda02:~

alienzh:[alice] [22] /alicescern.chifuserdasaliprod/demc’ »find -p size.turl Aalicescern.ch/demo/data *,.root
13341484 alien:///alicescern,chidemosdata 0115, 00108, niniesd, root

10394527 alieni/ssalicescern,chi/demos/data 0115, 00156, miniesd, root

12418685 alien:///alicescern,chs/demosdata 0115, 00229, niniesd, root

aliensh:[alice] [23] falicescern,ch/usersasaliprod/denas [

Available fields are (only the 'interesting' ones are commented):

seStringlist

aclld
[fn logical AliEn file name
dir
si ze size of the file in bytes
gowner Group
guid the GUID of the file
owner owner (role)
ctinme
replicated
entryld
expiretinme
sel i st
type
md5 the MD5 sum of that file
the file permissions in text
perm
format

If you add the '-r' flag, you can print additional fields describing the location of
that file:

longitude
latitude
location

msd (mass storage domain)

domain

In combination with ROOT the flag '-x <collection name>' is useful since it prints
the result as XML collection, which can be read directly by ROOT.

114/199

The ALICE Offline Bible

alientest@® pcarda0?;--
aliensh:[alice] [24] Aalicescern.chifuzersa‘aliprodsdemas *find —x mycollection falicescern.chsdenosdata *.root
<Paml wersion="1,0""
<alien>
<collection name="mycollection'>
<event name="1">
<file name="0115,00108, miniesd,root” aclld="" ctime="2006-04-19 17:39:13" dir="3013979" entryld="3014114" exp
iretime="" gowner="zZ2" gquid="C1D1BODZ-EDA0-11DA-9BC2-00ENS1239A1E" 1fn="/alice cern, chidema/data 0115, 00108, miniesd
Lroot” mdS=" 000000000 000000000M000000000NN00" oyner="peters" perm="T55" replicated="0" seStringlist=",47." zelist="
" 2ize="13341484" turl="alien://falicescern.chideno/data /0115, 00108, miniesd, root" type="f" />
<levent>
<ewent. name="2">
<file name="0115,00156, miniesd, root” aclld="" ctime="2006-04-13 17:39:13" dir="3013373" entryld="3014115" exp
iretime="" gowner="z2" guid="12F0B34E-B190-11DA-9E13-00E0B1299A1R" 1fn="/alice/cern,ch/demo/data 0115, 00156, miniesd
Lroot" mdS=" 000000000 0GHNAGAAAAANAANNOMNN00" ouner="peters" perm="720" replicated="0" seStringlist=",47," =elist="
" 2ize="10894527" turl="alien:///alice/cern.ch/demo/data/ 0115, 00156, miniesd, root" type="f" />
<levents
<ewent name="3">
<file name="0115,00223,miniesd,root” aclld="" ctime="2006-04-13 17:33:13" dir="3013973" entryld="301411E" exp
iretime="" gowner="z2" guid="EOFZF4F8-8090-11DA-BAS4-00EOS1299A1E" 1fn="/alice/cern,.ch/demo/data /0110, 00229, miniesd
Lroot” md5="00000000000000000000000000000000" owner="peters" perm="720" replicated="0" seStringlist="_ 47, " =elist="
" 2ize="12418685" turl="alien:///alices/cern,ch/deno/data /0115, 00229, miniesd, root" type="f" />
<leventr
<info command="[/alicecern, chiuzersasaliprodsdenas]t Find -z —x mycollection Aalicescern,chidemosdata *, root”
creator="admin" date="Thu Jan 11 11:21:58 CET 2007" timestamp="1168510918" />
<fcollection>
<Aalien>
aliensh:[alice] [26] /alice/cern.chiuser/adaliprod/dencs >l

soveon

[alientest® pcarda02:~ - Shell - Konsole <2»

Session Edit View Bookmarks Settings Help

You can easily store this in a local file 'find > /tmp/collection.xml".

Additional metadata queries can be added using the tagname:condition syntax.
Several metadata queries can be concatenated with the logical ‘or " and ‘and’
syntax. You should always single-quote the metadata conditions, because < >
are interpreted by the shell as pipes. The following example shows a metadata
query on the tag database:

&l

L9

aliensh:[alice] [7] falice/ >find /falice/simulation/2006/PDCO6/Residual /CDE %/Run%.root '|[=
CDB: first_run<=5 and CDB:last_run»=5'

Tan 16 15:23:45 info Filtering according to "and’ CDE first_run<=5

Tan 16 15:23:45 info Filtering according to "and' CDE last_run>=5

Jan 16 15:23:45 info The tag CDBE has already been selected. Just add the constraint
falice/simlation/2006/PDCOG/Residual /CDB/EMCAL /Calib/GainFactors_and_Pedestals/Rund_2995092
285 _wl.root
Jalice/simulation/2006/PDCOG/Residual /CDB/FMD,/Calib/Al troMap,/Run0_99999559_v1. root
Jalice/similation,/2006/PDCOG/Residual /CDEB/FMD/Calib,/Dead /Rund_9995999_vl.root
Jalice/similation,/2006/PDC0OG,/Residual /CDB/FMD,/Calib/Pedestal /Run0_959955%9_vl.root

falice/similation/2006/PDCOG/Residual /CDB/FMD/Calib/Pul seGain/RunC_9999995_vl1 . root
falice/simulation/2006/PDC0OG,/Residual /CDB/FMD/Calib/SampleRate/Rund_9998999_vl.root
Jalice/simulation/2006/PDC0OG,/Residual /CDB/FMD,/Calib/StripRange,/Rund_99858598_vl.root
Jfalice/simulation/2006/PDC0G/Residual /CDE/FMD/Calib/ZeroSuppression,/Rund_998585998_vl. root

Jalice/simulation/2008/PDC0OG,/Residual /CDB/HMPID/Align/Data /Runl_99%95998_v1.root
falice/simulation/2006/PDCOG,/Residual /CDE/HMPID /HMPIDConfig /RefIdxCEF14/Rund_99899558_vo. T
oot
Jalice/simulation/2008/PDC0OG,/Residual /CDB/HMPID,/HMPIDConfig, /RefIdxC6F14,/Rund_5S95858595_vl1. 1

oot

Jalice/similation,/2006/PDC0OG,/Residual /CDB/ITS,/Calib,/CalibsDD,/Run0_99905%5_vl. root
Jalice/similation,/2006/PDCOG/Residual /CDB/ITS,/Calib,/CalibSPD,/Run0_9998999_v1. root
Jalice/similation,/2006/PDCOG/Residual /CDB/ITS,/Calib,/CalibssD,/Run0_9990999_vl, root e
Jalice/simulation/z006/PDCO6,/Residual /CDE/ITS/Calib/RespSDD,/Run0_858958585_vl1. root =

The same query as above, but this time with the XML output format. All
metadata information is returned as part of the XML output file:

115/199

The ALICE Offline Bible

[alientest@® pcarda0?:~ - Shell - Konsole <2» [=][a[=]

Session Edit View Bookmarks Settings Help

Al

aliensh:[alice] [8] falice/ »>find -x dump /alice/simulation/2006/FDCO6/Residual /CDE %/Run
%.root "CDE:first_run<=5 and CDB:last_run>=3
Tan 16 15:24:32 info Filtering according to "and' CDB first_run<=5
Tan 16 15:24:32 info Filtering according to "and' CDE last_run>=5
Jan 16 15:24:32 info The tag CDE has already been selected. Just add the constraint
<?xml wersion="1.0"7>
<alienz
<collection name="dump">
<event name="1"=
<file name="Run0_9998995_vl.root" aclld="" ctime="2006-05-29 18:23:57" dir="3013818

" entryId="56" expiretime="" file="/alice/simulation/2006&/PDCO5/Residual /CDB/EMCAL/Calib/
GainFactors_and_Pedestals/Run0_5995595_vl.root” |ilycydkgCRii Jowner="z2" guid="CDA4F37E-
07 8B-11DB-AAPF-CO0OEQS1200A1E" last run="0ooogos" 1fn="/alice/simulation/2006/FDC0OG/Residua
1/CDB/EMCAL,/Calib/GainFactors_and_Pedestals,/RunC_9985599_vl root"” md5="" offset="" owner=
"aliprod"” path_level 0="EMC" path_level_1="Calib" path_level 2="GainFactors_and_FPedestals
" perm="7¥33" replicated="0" seStringlist=",47, " size="6646" turl="alien:///falice/simulati
on/2005/FPDCOG/Residual /CDB/EMCAL/Calib/GainFactors_and_Pedestals/Run0_8899885_vl.root" ty
|pe="£f" version="1" />

</event>

<event name="10">

<file name="RunQ_5559%998_v0 . root" aclld="" ectime="2006-12-01 13:03:39" dir="3014341

" entryId="188" expiretime="" file="/alice/simulation/2006/PDC06/Residual /CDE/HMPID/HMEID
Config/RefIdxCEF14/Rund_9859599 v0.root" first run="0" gowner="aliprod" guid="3SF21ED54-07
72-11DBE-9335-00E081298A1R" last_run="099089%" 1fn="/alice/simulation/2006/PDC0O&/Residual /

5.9.8.2Metadata Commands

Schema Definition

To tag metadata in AliEn, you first need to create a schema file defining the
metadata tag names and variable types. You find existing tag schema files for
your VO in the AlIEn FC in the directory “/<VOx>/tags/” or in your user home
directory “~/tags”.

The syntax used to describe a tag schema is:
<tagnane 1> <variable type 1> [, <tarnane 2> <variable type 2> .]

<variable type> are SQL types and can be e.g.

® char(5)
® int(4)
® float

® text

If you want to create your own tag schema you will have to copy a schema file
into the tags directory in your home directory. You might need to create it, if it
does not exist.

To tag your files e.g. with some description text, create a tag file
~/tags/description containing:

116/199

The ALICE Offline Bible

alientest@® pcarda0?; -

alienshi[alice] [10] ‘alicefcern,chfuser/p/peters/ »cat tags/description
dezcription text

alienshi[alice] [11] /alicedcern,chiuser/p/peterss >

addTag [-d] <directory> <tag name>

add the schema <tag name> to <directory>. The schema file called <tag name>
must be saved in the AliIEn FC under /<VOs>/tags’ or in your home directory
‘~ftags’. All subdirectories will inherit the same schema. By default, all
directories using the same schema store the metadata information in the same
table. The ‘-d’ flag creates a separate database table for the metadata of
schema <tag name>.

Return Values ($?):
« 0 Command successful
o 1 Command failed
« 255 Protocol/Connection error
showTags <directory>
Shows all defined tags for <directory>.
Return Values ($?):
« Command successful
+ Command failed
» Protocol/Connection error
removeTag <directory> <tag name>
Removes the tag <tag name> from <directory>. All defined metadata will be dropped.
Return Values ($?):
« 0 Command successful

e 1 Command failed

« 255 Protocol/Connection error

alientest@® pcarda0?;-

aliensh:[alice] [23] ralicescern,chifuser/p/peters’ raddTag ziptest description
Jan 11 15:16:51 info The table exists

Tag created

alienshi[alice] [24] falicedcern,chifuzer/p/peters’ rzhouTags ziptest

Jan 11 15:16:53 info Tags defined for Jalicedcern,chfuser/p/peters/ziptests
dezcription

alienzh:[alice] [25] Aalicedcern,chiuzer/p/peters/ HremoveTag ziptest description

Jan 11 15216455 info Deleting Tag description of Aalicedcern,chifuser/p/peters/ziptests
alienshi[alice] [26] /alice/cern,ch/user/p/peters’ 2

addTagValue <file> <tag name> <variable>=<value> [<variable>=<value> ...]

Sets the metadata <variable> to <value> in schema <tag name> for <file>. <tag
name> must be an existing metadata schema defined for a parent directory of
<file>, otherwise the command will return an error.

Return Values ($?):

117/199

The ALICE Offline Bible

« 0 Command successful
o 1 Command failed
« 255 Protocol/Connection error
showTagValue <file> <tag name>
Shows the tag values for <file> from metadata schema <tag name>.
Return Values ($?):
« 0 Command successful
o 1 Command failed
« 255 Protocol/Connection error
removeTagValue <file> <tag name>

Removes a tag value :

alientesti® pcardal2: -

alienzhi[alice] [32] Aalicedcern,chiuser/p/peters/ziptesty raddTagValus archive,zip description description=archive
Jan 11 15:18:10 info e have HASH{Oxaa0B66c) and file description

Jan 11 15318:10 info Let's make sure that we only have one entry

alienshi[alice] [33] falicefcern,chfuser/p/peters/ziptest/ »showTag¥alue archive,zip description

filelchar(265))

offset{inti11}) entryld(int{11}) description{text)
falicescern,chfuser/p/peters/ziptest/archive,zip

4 archive
alienshi[alice] [34] Falicefcern.ch/user/p/peters/ziptests »removeTag¥alue archive,zip description
alienshi[alice] [35] /alicedcern,chiuser/p/petersiziptests 2

File Catalogue Trigger

AliEn allows you to trigger actions on insert, delete or update events for a
certain directory tree. A trigger action is a script registered in the file catalogue
under /<VO>/triggers or ~/triggers, which receives the full logical file
name of the modified entry as a first argument when invoked.

addTrigger <directory> <trigger file name> [<action>]

Adds a trigger <trigger file name> to <directory>. <action> can be insert,
delete or update (default is insert).

showTrigger <directory>
Shows the defined trigger for <directory>.
removeTrigger <directory> [<action>]

Removes the trigger with <action> from <directory>.

5.9.8.3Job Management Commands

top [-status <status>] [-user <user>] [-host <exechost>] [-command
<commandName>] [-id <queueld>] [-split <origJobld>] [-all] [-all_status]

print job status information from the AliEn task queue

118/199

The ALICE Offline Bible

-status <status>

-user <user>

-host <exechost>
-command <command>
-id <queueld>

-split <masterJobld>
-all

-all_status

Return Values ($?):

print only jobs with <status>

print only jobs from <user>

print only hosts on <exechost>

print only tasks executing <command>
print only task <queueld>

print only tasks belonging to <masterJobld>
print jobs of all users

print jobs in any state

« anything not 255 Command has been executed

« 255

Protocol/Connection error

similar functionality to 'top': report process states

If the environment variable al i en_NOCOLOUR_TERM NAL is defined, all output
will be black&white. This is useful, if you want to pipe or parse the output

directly in the shell.

The following options are defined (parameters like <list> are comma separated
names or even just a single name):

-F {1}
-f <flags/status>

-u <userlist>

-s <sitelist>
-n <nodelist>

-m <masterjoblist>

-0 <sortkey>

j <jobidlist>

-I <query-limit>

| = long (output format)
e.g. -f DONE lists all jobs in status ‘done’

list jobs of the users from <userlist>. -u % selects
jobs from ALL users!

lists jobs which are or were running in <sitelist>
lists jobs which are or were running in <nodelist>

list all sub-jobs which belong to one of the master
jobs in <masterjoblist>

execHost, queueld, maxrsize, cputime, ncpu,
executable, user, sent, split, cost, cpufamily, cpu,
rsize, name, spyurl, commandArg, runtime, mem,
finished, masterjob, status, splitting, cpuspeed, node,
error, current, received, validate, command,
splitmode, merging, submitHost, vsize, runtimes,
path, jdlI, procinfotime, maxvsize, site, started, expires

list all jobs with from <jobidlist>.

set the maximum number of jobs to query. For a non-
privileged user the maximum is 2000 by default

119/199

The ALICE Offline Bible

-q <sql query>

-jdl <jobid>
-trace <jobid> [trace-
tag[,trace-tag]]

Return Values ($?):

if you are familiar with the table structure of the AliEn
task queue, you can specify your own SQL database
query using the keys mentioned above. If you need a
specific query, ask one of the developers for help.

active jobs in extended format

select all your owned jobs in any state

select all YOUR jobs which are waiting for execution
select all YOUR jobs which are in error state

select jobs of ALL users

display the job jdI of <jobid>.

display the job trace information. If tags are specified,
the trace is only displayed for these tags per default,
all proc tags are disabled. to see the output with all
available trace tags, use ps -trace <jobid> all.

the available tags are:

proc resource information

state job state changes

error Error statements

trace job actions (downloads etc.)

all output with all previous tags

e 0 Command has been executed

« 255 Wrong command parameters specified

120/199

The ALICE Offline Bible

ttor® pcardal2: - [=][o[x]
aliensh:Lalicel [96] /alice/cern.ch/user/p/peters/ >ps -h

usage: ps -F {1} (output format)
-f <{flags/status>
-u <userlist?>
-s <sitelist>
-n <nodelist>
-m <master joblist>
-0 <sortkey>
—-j <jobidlist>
-1 <{query-limit>
-q <sql query>

-X active jobs in extended format

-A select all owned jobs of you

-M select all jobs which are waiting for execution of you

-E select all jobs which are in error state of you

—-a select jobs of all users

-jdl < jobid> : display the job jdl

—trace {jobid> [trace-tagl.trace-targl]l : display the job trace
information
aliensh:[alicel [97] /alice/cern.ch/user/p/peters/ >J

submit [-h] <jdI-file>
submits the jdI file <jdI-file> to the AliEn task queue.

local jdI files are referenced using “fi | e: <l ocal -fi | e- name>"

AliEn files are referenced by “<ali en-fil e-nanme>" or “al i en: <ali en-
file-name>".

alientest@® pcarda0?2: -~

aliensh:[alice] [32] ralicescern.chifuszersa‘aliprods rsubmit /jdl/date, jdl
Submit =ubmit /jdl/date,jdl

submit: Your new job ID is 1642981

alienzh:[alice] [33] ‘alicedcern,chi/user/asaliprod/ »ps -jdl 1R42581

[
Fequirementz = { other,Type == "machine" } && { other,TTL > 21600 } && (other.Price <=1 J:
Price = 1
executable = "/binddate"s
Uzer = "aliprod":
TTL = 216002
Type = "Job"

]
alienshi[alice] [34] Falicedcern,chifuszersasaliprod/ »ps —trace 1642681
Thu Jan 11 11:22:47 2007 [state 1@ Job 1642581 inserted from aliprod@pcapizeryOl,cern,ch
aliensh:[alice] [35] /alicefcern.chiusersasaliprods >l

Return Values ($?):
e 0 Submission successful
e 255 Submission failed

Warning: local JDL files can only be submitted, if they don't exceed a certain
size. In case you reference thousands of input data files, it is safer to register
this JDL file in the file catalogue and submit it from there. The proper way to
access many input data files is to use the InputDataCollection tag and to
register an XML input data collection in AliEn as explained later on.

121/199

The ALICE Offline Bible

alientesti® pcardal2: - [=][a][=]

aliensh:[alice] [42] falicedcern,chiuserdadaliprods »submit /jdl/date.notexisting
Submit submit /jdl/date.notexisting

Errar getting the file /jdl/date.notexisting from the catalogue

submit: Error submitting job—jdl /jdl/date.notexisting

alienshi[alice] [43] falice/cern.chiusersafaliprod’ »echo $7

255

alienshi[alice] [44] Aalicedcern,chiuserdadaliprod/ »submit /jdl/date, jdl
Submit submit /jdl/date, jdl

submity Your new job ID is 1642583

alienshi[alice] [45] falicedcern.chiuserdafaliprod’ »echo $7

0

aliensh:[alice] [46] /alicecern,chiuserd/asaliprods >l

kill <job-id>
kills a job from the AliEn task queue

<job-id> can be a 'single' or a 'master' job. Killing a 'master' automatically kills all it's sub
jobs.

to be able to kill a job, you must have the same user role like the submitter of that job or
be a privileged user.

Return Values ($?):

« 0 Job successfully killed

e 255 Job couldn't be killed

alientest@ pcarda02: -

alienshi[alice] [47] falicedcern,chiuserdadaliprod/ »submit /jdl/date, jdl
Submit submit /jdl/date, jdl

submity Your new job ID is 1642584

aliensh:[alice] [48] Aalicefcern,chfuser/asaliprod/ »kill 1642584

Process 1642584 killed!!

aliensh:[alice] [49] ralicedcern.chi/usersa‘aliprods recho %7

Q

aliensh:[alice] [50] /alicefcern,chiusersasaliprods >l

queue [info, list, priority]
provides TaskQueue state information and other parameters to the user. It
accepts three subcommands:
gueue info [<Queue Name>]
prints for one <Queue Nane> or all sites the status information and counters of

individual job states. Here you can see e.g. if the site, where you want to run
your GRID job is currently blocked, closed or in any error state.

queue |ist [<Queue Nane>]

prints for <Queue Name> or all sites status information, configuration and load
parameters.

122/199

The ALICE Offline Bible

tutor® pearda0?;~ (=]
aliensh:[alicel [126] /alice/cern.ch/user/p/peters/ >queue list
site open status load runload queued/max run/max
ALICE::LCG::Trujillo undef closed-blocked -0 -0 0/30 0/100
ALICE::LCG: :UNAM undef closed-blocked -0 -0 0/10 0/10
Alice::NGO: :SGE undef closed-blocked -0 -0 0720 0/34
Alice::Aalborg: :ARC undef down -0 -0 0/4 0/4
filice::CERN: :aliendbb undef doun -0 -0 /50 07200
ALICE::CERN::CERN undef doun -0 -0 07100 0/600
filice::LCG: :virtual undef doun undef undef 00 0/9
Alice::PSNC::PBS undef down -0 -0 0/100 0/120
ALICE: :Se jong: :PBS locked closed-blocked -0 -0 0/23 0/23
ALICE::LCG: :KFKI locked down -0 -0 0/10 0/30
UNASSIGNED: :SITE locked resync undef undef 0/0 0/0
Alice::CERN::LCG locked—err jobagent-no—match 53.83 53.83 0/100 323/600
Alice: :CERN: :pcegee?2 open down -0 -0 0/3 0/3
flice: :Houston: :SGE open down -0 -0 0/10 0/100
Alice: :Jyvaskyla: :PBS open down -0 -0 0/3 0/3
ALICE::LCG: :KISTI open down -0 -0 0720 0/100
ALICE::LCG: :Kosice open down -0 -0 0/20 0/50
ALICE::LCG: :Poznan open down -0 -0 07100 0/120
ALICE::LCG::Troitsk open down -0 -0 0/5 0/10
Alice::05C: :PBS open Jjobagent-matched 80 80 0/10 64/80
s ALICE : :LCG: :Bologna open open—matching -0 -0 0/10 0/20

queue priority

queue priority list [<user-nanme>]

prints for one (<user-name>) or all users information about their priorities.
Priorities are specified by a nominal and maximal value of parallel jobs.
Currently, the maximum is not enforced. Initially, every new user has both
parameters set to 20. If the system is not under load, you will be able to run
more than 20 jobs in parallel. If the system is loaded in such a way, that all
nominal jobs fill up exactly the capacity, you can run exactly 20 jobs in parallel.
If the system is running above the nominal load, you will run less than 20 jobs in
parallel, according to a fair share algorithm. If you need a higher job quota,
contact the ALICE VO administrators.

tuto rd pcarda02; ~

aliensh:[alicel [115]1 /alice/fcern.ch/user/p/peters/ >queue priority list

user userload priority computedpriority max

arallelJobs running nominalparallelJobs waiting

admin 0 1 0 20
0 10 0

adminssl 0 1 0 20
0 10 0

alidaq 0 1 0 20
0 10 0

alienmaster 0 1 0 20
0 10 0

aliprod 0.323333 1 67 120
388 1200 404

alla 0 1 0 20
0 10 0

amastros 0 1 0 20

| 0 10 0
anderlik 0 1 0 20

[=][]

queue priority jobs [<user-name> % [<nmax jobs>]

prints the job ranking for all jobs or <user-name>. <max jobs> parameter limits
the list, if there are too many jobs in the queue. If you want to see the ranking of
the ten jobs which are to be executed next, if picked up by an agent, do

queue priority jobs % 10

123/199

The ALICE Offline Bible

spy <job id> workdir|nodeinfo|<sandbox file name>

allows to inspect running jobs. The first argument is the job ID you want to
inspect. The second argument can be:

Wor kdi r lists the contents of the working directory
registerOutput <job id>

Failing jobs do not automatically register their output in the file catalogue. If you
want to see (log) files of failed jobs you can use this command.

Output files are registered in your current working directory. It is convenient, to
create an empty directory and change that before executing this command.

o rd pcarda0?:-- (=[] [x]
aliensh:Lalicel [38] /falice/cern.ch/user/p/peters/ »>spy 1316658 workdir
total 152

druxrwxrwx 3 aliprod =22 4096 MNov 29 15:39 .

druxr—xr-x 3 aliprod =22 4096 MNov 29 15:38 ..

“rWXr—Xr-x 1 aliprod =22 232 Nov 29 15:38 command
“ru-rw-r—— 1 aliprod =22 3270 Nov 29 15:38 demoBatch.C
druwxruxr-x 3 aliprod z2 4096 Mov 29 15:39 ESD

“rw-rW-re— 1 aliprod z2 98539 Nov 29 15:38 ESD.par
“ru-ru-r—— 1 aliprod z2 6299 Nov 29 15:38 esdPt.C
“ruw-rW-r-— 1 aliprod z2 1471 Nov 29 15:38 esdPt.h
“TW-TrW—rW— 1 aliprod =22 512 Nov 29 15:38 pp.xml
“rU-rW—rw— 1 aliprod =22 0 Mov 29 15:38 stderr
“rW-rW-rw— 1 aliprod =22 10816 Mov 29 15:39 stdout
aliensh:[alicel [39]1 /alice/cern.ch/user/p/peters/ >

nodei nfo
display information about the worker node where the job <job ID> is running
<sandbox file name>

can be e.g. stdout, stderr or any other file name existing in the sandbox. Be
careful not to spy big files and be aware that the contents is printed as text onto
your terminal.

124/199

The ALICE Offline Bible

twtord® pcarda02; - [=][m][=]
aliensh:Lalicel [39] /alice/cern.ch/user/p/peters/ »spy 1316658 stdout
Test: ClusterMonitor is at lxplus003.cern.ch:8084
Execution machine: 1xb0218.cern.ch
Setting the environment for ROOT
Setting ROOTSYS to /afs/cern.ch/alice/library/pdc04/¥0_ALICE/ROOT/v5-13-04/v
5-13-04
HEHHEREH AR AR AN A AN A AR A AR A AR A AR A AR AN AN AN AN AN AN ENS
= APISCONFIG ¥2.2 ®
Setting up close SE ®
Setting up API endpoints ®
Setting up API PATH and LD_LIBRARY_PATH for shipped library..
= PATH => /afs/cern.ch/alice/library/pdc04/¥Y0_ALICE/AP
ISCONFIG/Y2.2/api/bin
= LD_LIBRARY_PATH => /afs/cern.ch/alice/library/pdc04/¥Y0_ALICE/AP
ISCONFIG/Y2.2/api/lib
GCLIENT_NOGSI =>1
GCLIENT_NOPROMPT =>1
% GCLIENT_COMMAND_MAXWATT => 3600
% GCLIENT_COMMAND_RETRY => 50
GCLIENT_SERYER_RESELECT =>4
GCLIENT_SERYER_RECONNECT => 2
| OCLIENT_RETRY_DAMPING => 1.5
GCLIENT_RETRY_SLEEPTIME = 2
HHEHHH MR A AR AR AN ENENEN

5.9.8.4Package Management

packages

This command lists the available packages defined in the package
management system.

Return Values ($?):
e 0 Command has been executed

e 255 Protocol/Connection error

125/199

The ALICE Offline Bible

ttor® pcardal2: -
aliensh:Lalicel [112]1 /alice/cern.ch/user/p/peters/ >packages
Nov 29 15:19:39 info Calling directly getlistPackages (-z list)
Nov 29 15:19:39 info The PackMan has the following packages:
admin@AliRoot ::v4-03-05
admin®GEANT : :v1-1
peters@RO0T::5.09.01
peters@RO0T::5.11.07
kschwarz@R00T::5.0.0
kschwarz@R00T::5.10.0
kschwarz@R00T::5.10.2
rvernet@AliRoot : : v4-02-01
rvernet®AliRoot : : v4-04-Release
rvernet®@AliRoot : : v40503
rvernet®RO0T: :v5-11-02
rvernet®RO0T: :v5-13-04
rvernet@RO0T: :v51302
hricaud®AliRoot : :4-04-Rev-08
hricaud®AliRoot : :4-04-Rev08
hricaud®AliRoot : : v4-04-Rev-08
hricaud®AliRoot : : v4-04-Rev08
hricaud®R00T::5-13-02
alidaq@fliRoot: :testtpc—head
pchrist@ROOT: :v5.13.04b
s YO_ALICE@RAliRoot::4.02.07

[=][o[x]

5.9.8.5Structure and definition of Packages

You select a certain package by specifying in your job description:
Packages={ <package nane 1> [, <package nanme 2> ...] };

Packages are divided into user and VO packages. The VO packages can be found in
the file catalogue under / al i ce/ packages , while user packages are stored in the
home directory of users under $HOVE/ packages.

5.9.8.6Create an AliEn package from a standard ROOT CVS source

If you want to publish your self-compiled ROOT version:

cd root/

make dist

cd../

create a file “.alienEnvironment”

unzip the dist file created by ROOT: e.g. unzi p root *.tgz

add the .alienEnvironment file: tar rvf root*.tar .alienEnvironemt
zip the ROQT archive file: gzi p root*. tar

publish the new package in AliEn as your private version 5.10.0 :
nkdir -p $HOVE/ packages/ ROOT/ 5. 10. 0/

cp file:<root-tgz> $HOVE/ packages/ ROOT/ 5. 10. 0/ " unane’ -
“unane -p°

HUHHHH AT PackMan Setup Fil e for ROOT ###HH#HHHHHHHHHAHAHH
echo "*** PackMan Setup Start ***"

126/199

The ALICE Offline Bible

export ROOTSYS=$1/r oot
echo

AL S R R R R S I S S R O

echo "ROOTSYS set to $ROOTSYS"
export PATH=$ROOTSYS/ bi n: $PATH
echo

LR R R R R RS R R R R R S R R SRR R R R SRR R EEEEEEEEEEEEEEEE]

n

echo "PATH set to $PATH"
export LD LI BRARY_PATH=$ROOTSYS/ | i b: $LD LI BRARY_PATH
echo

AL R R O o O O O S O O O o O R O I O

echo "LD LI BRARY_PATH set to $LD LI BRARY_PATH"
echo

AL S R R S O O S R O

echo "*** PackMan Setup End ***"

The following two |ines MIUST be there
shift

$~k

5.9.8.7Define Dependencies

To define dependencies, you first need to add the metadata schema PackageDef to
your software directory ~/ packages. Then, you add another software package as a
dependency by adding the tag variable ‘dependencies’ to your package version
directory. Several packages can be referenced by a comma separated list.

Example:

addTag PackageDef ~/packages/ ROOT
addTagVal ue 5.11. 07 PackageDef depenci es="VO _ALI CE@G\PI SCONFI G : V2. 2"

5.9.8.8Pre- and Post-Installation scripts

Pre- and Post-Installation scripts are defined as dependencies via metadata tags on the
software version directory. The schema is again PackageDef, the tags are:

e pre_install
e post_install

The assigned tag value references the pre-/post-installation script with its logical AliEn
file name.

5.10The ROOT AliEn Interface

5.10.1Installation of ROOT with AliEn support

This document proposes three different ways to install ROOT. If you develop within the
ROOT framework and you need to modify ROOT itself, it is recommended to follow
5.10.1.1. If you don't need to develop parts of ROOT, you can use 5.10.1.2 (which
recompiles ROOT on your machine) or 5.10.1.3 (which installs a precompiled binary).

127/199

The ALICE Offline Bible

5.10.1.1Manual Source Installation from CVS

* Login to the ROOT CVS server with 'cvs' as password:

cvs -d :pserver:cvs@oot.cern.ch:/user/cvs login

» Checkout the ROOT source code, either the CVS Head:

cvs -d :pserver:cvs@oot.cern.ch:/user/cvs co root

Or a tagged version (= v5-10-00):

cvs -d :pserver:cvs@oot.cern.ch:/user/cvs -r v5-10-00 co root

* The AliEn module in ROOT needs GLOBUS to be enabled. You need to set the
environment variable GLOBUS_LOCATION, e.g. the version installed by the
AliEn installer is referenced by:

export GLOBUS_LOCATI ON=/ opt/ al i en/ gl obus (or setenv)

* Run the configure script enabling AliEn:

./configure --enable-alien

« the script will look for the API package in the default location
"/opt/alien/api'.Ifthe APlis installed in another location, you can specify
thisusing' --with-alien-incdir=<> and'--with-alien-

I'i bdi r=<>' options. E.g. if you have the API installed under $SHOME/api,
execute:

./configure --enable-alien

--with-alien-incdir=$HOVE/ i ncl ude
--with-alien-1ibdir=$HOVE/ |i b

e Compile ROOT
make

« For all questions concerning the ROOT installation in general, consult the
ROOT web page http://root.cern.ch

5.10.1.2Source installation using AliEnBits

Follow the instructions in 5.3.3 which explain how to install the AliEnBits framework until
(including) it comes to the 'conf i gur e' statement. Change into the ROOT application
directory and start the compilation

cd $HOVE/ al i enbi t s/ apps/ alien/root
make

If you previously installed the API via AliEnBits, the ROOT configuration and
compilation will start immediately. If not, the AliEnBits system will start to download all
dependent packages and compile them beforehand.

Note: the AliEnBits system will install the ROOT version defined in the build system for
the AliEn release you are using. It is defined as the symbol 'GARVERSI ON' in
$HOVE/ al i enbi t s/ apps/ al i en/root/root/ Makefile. You cannot easily
switch to another CVS tag following this procedure.

128/199

The ALICE Offline Bible

ae]

5.10.1.3Binary Installation using the AliEn installer

Follow the steps in 5.3.1 but select 'ROOT' as the package to be installed. If you
selected the default localtion '/ opt/alien/' in the installer, you will find ROOT
installed under '/ opt / al i en/ r oot ".

5.10.2ROO0T Startup with AliEn support - a quick test

To validate your installation, do the following test:

Use the al i en- proxy-init command to retrieve a shell token from an API service
(see chapter 5.6).

It is convenient to write a small script for the ROOT start-up:

#! / bi n/ bash
test -z $ROOTSYS && export ROOTSYS=/opt/alien/root
export PATH=$ROOTSYS/ bi n: $PATH

export
LD LI BRARY_PATH=$ROOTSYS/ | i b: $LD_LI BRARY_PATH: /opt/alien/api/lib

if [-e/tnp/gclient_env_$UD]; then
source /tnp/gclient_env_$U D
root $*
fi

If you got the ROOT prompt, execute
TGid:: Connect("alien:",0,0,"t");

This uses your present session token and prints the 'message of the day (MOTD)' onto
your screen. This method is described more in detail in the following subsections.

If you got here, everything is properly configured.

apiser . £ OO0 v O Ole E@lz‘

[peapiservil] /home/apiservicefalice/root » alienrocot -b

EE I A

WELCOME to ROOT
Version 5.08/01 16 December 2005

You are welcome to visit our Web site
http://root.cern.ch

EE I A

Compiled on 18 January 2006 for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.16.6, January 8, 2006
Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0] TGrid::Connect("alien://",0,0,"t")

* Welcome to the ALICE VO at alien://pcapiserv0l.cern.ch:9000
* API Service written by Derek Feichtinger/Andreas-J.Peters
* Running with Server vz.0.0

root [1] I

5.10.3The ROOT TGrid/TAlien module

ROOT provides a virtual base class for GRID interfaces encapsulated in the TGrid

129/199

The ALICE Offline Bible

class. The ROOT interface to AliEn is implemented in the classes TAlien and
TAlienFile. TAlien is a plug-in implementation for the TGrid base class and is loaded, if
you specify 'alien:' as the protocol to load in the static factory function of TGrid.
TAlienFile is a plug-in implementation for the TFile base class.

E.g. the factory function for TGrid is the 'Connect' method:
TGid* alien = TGid::Connect("alien://");

This triggers the loading of the AliEn plug-in module and returns an instance of TAlien

TFile is the base class for all file protocols. A TAlienFile is created in the same manner
by the static factory function 'Open’ of TFile:
TFile* alienfile = TFRile::Open("alien://....");

The following sections highlight the most important aspects of the interface and are not
meant to be exhaustive. For more details see the ROOT documentation included in the
source code, which is located in the 'root/alien’ directory of the source.

Note: Examples in this chapter are self contained, which means that they always start
with a Connect statement.

5.10.3.1TGrid::Connect - Authentication and Session Creation

The first thing to do (see the quick test in 5.10.2), in order to get access to AliEn data
and job management functionalities, is to authenticate with an API service, or to use an
already existing session token.

As described in 5.5.1, we can store a session token within the ROOT application, or we
access a session token that was established outside the application to be used by
aliensh.

/l--- Load desired plug-in and setup conection to GRID

static TGid *Connect(const char *grid, const char *uid = 0,
const char *pw = 0, const char *options = 0);

Syntax 1: TGid:: Connect

Consider these example statements to initiate connections:

Connect creating a memory token to a default API service :
TGid:: Connect("alien://");

Connect creating a memory token to a user-specified API service:
TG id:: Connect("alien://myhost.cern.ch: 9000");

Connect creating a memory token with a certain role:
TG id:: Connect("alien://nyhost.cern.ch:9000", "aliprod");

Connect using an existing file token (created by alien-token-init):

TGid:: Connect("alien://",0,0,"t");

Note: the first method mentioned should apply to 99% of all use cases. If you use
programs that fork, you should always use the file based token mechanism or call in
every forked process the Connect method again. If you are using threads, you must
lock the Command statements later on with a mutex lock.

130/199

The ALICE Offline Bible

Return Values :
« (TGrid") 0 Connect failed
e (TGrid*) =0 Connection established

ROOT sets the global variable gGid automatically with the result of
TGrid: : Connect . If you deal only with one GRID connection, you can just use that
one to call any of the TAlien methods e.g. g&i d->Ls() , butnot TAl i en: : Ls() !

TGrid: : Connect ("alien://") is equivalentto the call new TAlien(...), which
bypasses the plug-in mechanism of ROOT!

5.10.3.2TAlien::Command - arbitrary command execution

You can execute any aliensh command with the Command method (except the cp
command).

TG i dResult *Command(const char *commrand, bool interactive = kFALSE,
U nt_t stream = kOUTPUT);

Syntax 2: TAlien:: Command

As you have already seen, the API protocol returns four streams. The stream to be
stored in a TGridResult is, by default, the result structure of each command
(TAlien: : KOUTPUT). Another stream can be selected using the st r eam parameter:

STDOUT stream = TAlien::kSTDOUT
STDERR stream = TAlien::kSTDERR
result structure stream = TAlien::kOUTPUT
misc. hash stream = TAlien::kENVIR

Note: you need to add #i ncl ude <TAl i en. h>to your ROOT code, in order to have
the stream definitions available!

If you set i nteractive=kTRUE, the STDOUT+STDERR stream of the command
appear on the terminal, otherwise it is silent.

The result structure and examples for using the Command method are explained in the
next section.

Continue reading until section and then try the example given.

5.10.3.3TAlienResult - the result structure of TAlien::Command

TAlienResult is the plug-in implementation of a TGridResult returned by
TAlien: : Conmand. A TAlienResult is based on a TList which contains a TMap as list
entries. It roughly is a list of key-value pairs. If you want to find out names of returned
key names, just use the TAlienResult: : Print ("al | ") method or use the 'ghbox
-d' command.

5.10.3.4TAlien::Ls - Example of Directory Listing in the File
Catalogue

Consider this example, which executes the 'l s -1 a' function, then dumps the complete
result and finally loops over the result and prints all file names inthe / al i ce directory:

131/199

The ALICE Offline Bible

TGid::Connect("alien://");
TG idResult* result =gGid->Command("ls -la/alice",0, TAlien:: kOUTPUT) ;
result->Print("all");

while (result->GetKey(i,"name"))
printf("Listing file name: %\n",result->CetKey(i++, "nanme") ;

The keys defined for an 'ls' operation are currently:

I's-la name, md5, size, group, path, permissions, user,date
l's -m md5,path (here path is the full path name)

I's -b guid,path (here path is the full path name)

I's name,path

Since this is a very common use case, there are convenience functions defined to
simplify the syntax of the listing example:
TGid::Connect("alien://");
TG idResult* result =gGid->Ls("/alice",);
while (result->GetFil eName(i))
printf("Listing file name: %s\n",result->CetFil eNane(i ++)

5.10.3.5TAlien::Cd + TAlien::Pwd - Example how to navigate the
CWwD

The CWD allows you to reference files without absolute path names. The CWD is by
default (if you don't use a file token, where the CWD is shared between all sessions
using the same token and stored on disk) your home directory after connecting.

To see the current working directory use the Pwd command:

TGid:: Connect("alien://");
printf("Wrking Directory is %\n",gGid->Pwd());

It returns a const char* to your current workding directory name.

To navige the CWD use the Cd command:

TGid::Connect("alien://");
Bool result = gGid->Cd("/alice");

Return Values :
e KkTRUE Directory created
 kFALSE Directory creation failed

5.10.3.6TAlien::Mkdir - Example how to create a directory

Bool _t TAlien::Mdir(const char* Idn, Option_t* options, Bool _t

ver bose)
Idn specifies the logical directory name you want to create e.g.
“/alice/cern.ch/mydirectory”
options flags for the command

verbose=kTRUE controls verbosity

132/199

The ALICE Offline Bible

TGid::Connect("alien://");
Bool result = gGid->Mdir("nydirectory");

Return Values :
e KkTRUE Directory created
 kFALSE Directory creation failed

5.10.3.7TAlien::Rmdir - Example how to remove a directory

Bool _t TAlien::Rndir(const char* Idn, Option_t* options, Bool _t

ver bose)
Idn specifies the logical directory name you want to remove e.g.
“/alice/cern.ch/mydirectory”
options are flags for the command

verbose=kTRUE controls on verbosity of the command

TGid:: Connect("alien://");
Bool result = gGid->Rndir("nydirectory");

Return Values :
« KkTRUE Directory removed
+ KkFALSE Directory deletion failed

5.10.3.8TAlien::Rm - Example how to remove a file entry

Bool _t TAlien::Rm(const char* Ifn, Option_t* options, Bool _t verbose)

Ifn specifies the logical file name you want to remove e.g.
“/alice/cern.ch/myfile”
options are flags for the command (see 5.9.8).

verbose=kTRUE switches on verbosity of the command

TGid::Connect("alien://");
Bool result = gGid->Rn("nyfile");

Return Values :
« kTRUE File entry removed
« kFALSE File entry deletion failed

Note: as said previously - this function removes only file catalogue entries, no physical
files

5.10.3.9TAlien::Query - Querying files in the Catalogue

The query function is a very convenient way to produce a list of files, which can be
converted later into a ROOT TChain (e.g. to run a selector on your local machine or on

133/199

The ALICE Offline Bible

a PROOF cluster).

virtual TGridResult *Query(const char *path, const char *pattern

const char *conditions = , const
*options = "");

The syntax is straightforward:

path

pattern specifies a pattern to be matched in the full flename e.g.
*.root matches all files with 'root' suffix
* matches all files
galice.root matches exact file names

conditions conditions on metadata for the queried files

options options to the query command (see find in the aliensh section)

This is a simple example querying all “*.root” files under a certain directory tree. The

option “-I 5” sets a limit to return max. five files.

[l apiserviced pcapisen0l:~alicefroot-head4/root - Shell - Konsole

char

specifies the node (directory) where to start searching in the directory tree

Session Edit Wiew Bookmarks Settings Help

|

¥ e e e e e e e e e Y de e e e e e e e e e e e Y e e e e e e e e e e e e S e e e e e e e e e e e e e e e e e e e Y e Ve Ve e e e

AliEn v.2-12 has been released.
e e e e L e e e
root [1] TGridResult* result = gGrid->Query("”/alice/cern.ch/tutorial/
data/", "*.root","","=1 5"3;
root [2] result-=Print();

[000000) LEN: .../ AliESD=s.root

Size[Bytes]: 21284947 GUID: &6l1082860-21C2-11DA-A071-000BCDF4171
e
[000001) LEN: .../ AliESD=s.root

Size[Bytes]: 207223654 GUID: ZZ34EC81C-21E5-11DA-92BA-000BCDF4171
e
[000002) LEN: .../ /AliESDs.root

Size[Bytes]: 20841849 GUID: O0OF525CDE-21C3-11DA-A15]1-000BCDF4171
9
[000003) LEN: .../ /AliESDs.root

Size[Bytes]: 219801¥8 GUID: 5ZEEVESE-S91EZ2-11DA-9632-000BCDF4171
=}
[000004) LEN: .../ /AliESDs.root

Size[Bytes]: 20410551 GUID: 020A5%B10-851ES-11DA-S5F2-000BECDF4171
o

->» Result contains 100.27 MEB in 5 Files.
Toot [3]
1

A more advanced example using metadata is shown here:

134/199

The ALICE Offline Bible

[apiservice® pcapisernv0l:—falicefroot-head4/root - Shell - Konsole [=][o][*]
Session Edit Wiew Bookmarks Settings Help

&) [

root [0] Torid::Connecti"alien: / /"1, A
=> Trying to connect to Serwver [O] http://pcapiserv0l.cern.ch:10000 as
e e e e e e e e

* Welcome to the ALICE Vi at alien: //peapiserv0l.cern.ch:l10000

* Running with Server vz.1.3
Y Y Y Y e

e e e e e e e e e e e e e e e e

AliEn v.2-12 has been released.
ER R R e e
root [1] ToridResult* result = gGrid-=Query("/alice/simulation/2006/FDC
06/Residual /CDEB", "®/Run%.root", "CDB: first_run<=5 and CDE:last_run==5"1;
root [2] result->Printi);

{ 000000) LEN: .../Rund_S999555_ vl .root

Size[Bytes]: G548 GUID: CDA4FS7E-OVS8B-11DE-AAZF-00EQS81222A7B

{ 000001) LEN: .../Rund_S999555_vl.root

Size[Bytes]: 4822 GUID: CFOS9FoA-0VS8B-11DE-9337-00EQ812224A7B

{ 000002) LEN: .../Rund_S9995595_vl.root

Size[Bytes]: 3385 GUID: DOCOSYBAA-OVSB-11DE-ASEE-0QEQS8129947FE =

{ 000003) LEN: .../ /Run0d_S9995595_v1.root

Size[Bytes]: 1lal6zz2 GUID: DOSCEYEC-0F8B-11DE-92A42-00EQ8129947E

{ 000004) LEN: .../ /Rund_S9995955_vl.root L

Size[Bytes]: 165928 GUID: D1140FC8-07V8B-11DE-2338-00EQ0812994A7E ||
-

{ 000005 1 LEN: .../ Runl 959599595 vl .root
Il

The query returns also all metadata fields in the TGridResult object. You can use
TGridResult::GetKey to retrieve certain metadata values:

[apiservice® pcapiserv0l:-falicefroot-head4/root - Shell - Konsole [=][O][x]
Session Edit Wiew Bookmarks Settings Help

Size[Bytes]: 77a4y GUID: ¥0OBDOEEO-01CE-11DE-82FG6-00EQS812599A1R =

{ 000073) LEN: .../ /RBund_299992929_v1.root

Size[Bytes]: 7232 GUID: 6ECDSES84-01CE-11DE-SEBA-OQOEOQS1Z2599A1R

{ 000074 7 LEN: .../ /RBunl_9999999_ %2 root

Size[Bytes]: By20 GUID: 5C49E056-3107Z-11DRE-99F5-000EAGS43BE1

{ 000075) LEN: .../RBunl_9929259%_ vl .root

Size[Bytes]: 4331 GUID: 6E1AEZ12-01CE-11DE-S509-00EQ81299AT1R

{ 000076 1) LEN: .../Runl_9929959%_ vl .root

Size[Bytes]: 4751 GUID: ¥12CD11E-01CE-11DE-SCDE-00EQ81299AT1R

{ 000077 3 LEN: .../RBunl_99299599 %2 root

Size[Bytes]: 45354 GUID: 614B0174-3102-11DE-95F6-000EAGS4AZEE1

{ 000078 1 LEN: ... /Run0d_9S9995995_vl1.root

Size[Bytes]: 4773 GUID: 6FES4EDCO-01CE-11DE-EB1O05-00EQ81Z2009ATE

{ 000079 1 LEN: ... /Run0d_9S999995_vl1.root

Size[Bytes]: 4532 GUID: 063A07S5C-4A1F-11DE-AG4E-QOEQB1Z00ATER

{ 000080) LFN: ... /Bun0_ 9999993 v1.root

Size[Bytes]: 4530 GUID: FBEV¥DZ2Z2¥E-4A1E-11DE-S8CO-00EQE1Z200ATER

{ 000081) LFN: .../ /Bun0_ 9999993 v1.root

Size[Bytes]: 4500 GUID: B712849E-4AZF-11DE-91723-00EQ81200AT1R

-> Result contains 52.77 MB in 82 Files.

root [3] result-sGetKey(l, "first_run") =]

(econst char® Ox8ag9z438)1"0" =

root [4] [hd
1 1

All returned metadata values are in text (char*) format, and you have to apply the
appropriate conversion function.

135/199

The ALICE Offline Bible

5.10.3.10File Access using TFile - TAlienFile

ROOT has a plug-in mechanism for various file access protocols. These plug-ins are
called via the static TFile: : Open function. The protocol specified in the URL refers to
the appropriate plug-in. TAlienFile is the implemented plug-in class for file registered in
AliEn. Transfers are done using the TXNetFile class (xrootd) internally. To reference a
logical file in AliEn, use the 'alien://' protocol or add /alien' as prefix to the logical file
name space:

TFi I e:: Open
("alien:///alicelcern.ch/deno/data/0115. 00108/ ni ni esd. root ")
opens an AliEn file in READ mode.
TFil e:: Open("/alien/alicelcern.ch/deno/data/0115. 00108/ m ni esd.root");

is equivalent to the first statement.

TFi I e:: Open
("alien://lalicelcern.ch/user/t/test/nmyfile.root@LICE: :CERN :se0l","R
ECREATE")

opens an AliEn file in WRITE mode using the file versioning system at the storage
element ' ALI CE: : CERN: : se01' .

5.10.3.11File Copy operations in ROOT

The class TFileMerger implements besides File Merging functionality a copy function to
copy from 'arbitrary' source to destionation URLs. Instead of using aliensh commands,
you can copy a file within ROOT code following this example:

TFi | eMerger m

m Cp
("alien://lalicel/cern.ch/deno/data/0115. 00108/ ni niesd.root","file:/tnp
/ m niesd.root");

This works also when copying local to local files or AliEn to AliEn files.

5.11Appendix JDL Syntax

Every JDL tag follows this syntax for single values:

<t ag- nane> = "<val ue>";

or

<t ag- nane> = {"<val ue>"};

for a value list:

<tag-name> = { "<val 1>" |, "<val 2>", "<val3>" [... "<val N>"};
5.11.1JDL Tags
Executable

This is the only compulsory field in the jdl. It states the name of the Ifn that will be
executed. The file must be located either in /bin or /<VO>/bin or /<HOME>/bin

136/199

The ALICE Offline Bible

Arguments
These will be passed to the executable
Packages

This constrains the execution of the job to be done at a site where the package is
installed. You can also request a specific version of a package. For example
Packages="AliRoot" will require the current version of AliRoot, or
Packages="AliRoot::3.07.02" will require Version 3.07.02.

InputFile

A list of files that will be transported to the node where the job will be executed. Lfn’s
have to be specified like “LF:/alice/cern.ch/mymacro.C”.

InputData

InputData is similar to InputFile, but the physical location of InputData adds
automatically a requirement to the location of execution to the JDL.

It is required to execute the job in a site close to the files specified here. You can
specify pattern like "LF./alice/simulation/2003-02/V3.09.06/00143/*/tpc.tracks.root",and
then all the LFN that satisfy this pattern will be included.

If you don't want the files to be staged to the sandbox (typical for Analysis) as it is done
also for input files, you can specify “LF:/alice/....../file.root,nodownload”.

We recommend to use this tag only for a small number of files (<100) — otherwise the
JDL becomes very large and slows down processing. If you have to specify many files,
use InputDataCollection instead.

InputDataCollection

An input data collection is used to specify long lists of input data files and allows to
group corresponding files together. Use the find command to create an input data
collection.

The input data collection file contains the InputData in XML list format that can be
produced using the find command e.g.
find -x exanplel /alicel/cern.ch/data/ *.root > /tnp/exanplel. xm

This file is afterwards copied into AliIEn using the cp command. You should use this
mechanism, if you have many input files the submission is much fasterit is better for the
job optimizer services you don't need to specify the InputData field

InputDatalList

This is the name of the file were the Job Agent saves the InputData list. The format of
this file is specified in | nput Dat aLi st For nat .

InputDataListFormat
This is the list format of the InputData list. Possible formats are:
e “xml-single”

o “xml-group”

137/199

The ALICE Offline Bible

'xml-single' implies, that every file is equivalent to one event. If you specify 'xml-group’,
a new event starts every time the first base filename appears again, e.g.

"LF:/01/galice.root", ~1st event
"LF:/01/Kinematics.root",
"LF:/02/galice.root", ~ 2nd event
"LF:/02/Kinematics.root",

OutputFile

The files that will be registered in the catalogue after the job has finished. You can
specify the storage element by adding “@<SE-Name” to the file name.

Example:
Qut put Fi | e="hi st ogr am r oot @ALI CE: : CERN: : se01"

OutputArchive

Here you can define, which output files are archived in ZIP archives. Per default, AliEn
puts all OutputFiles together in ONE archive. Example:

This writes two archives: one with all the log files + STDOUT + STDERR stored in the
SE ALICE::CERN::se01, another archive containing ROOT files, which are stored in SE
ALICE::CERN::Castor2.

Cut put Archive =

{
"root _archive. zip:*.root @\ ice:: CERN: : Castor2",

"l og_archive: *.1o0g, stdout, stderr @ i ce:: CERN: : se01"
b

Validationcommand:

This specifies the script to be executed as validation. If the return value of that script is !
=0, the job will terminate with status ERROR_V, otherwise SAVED - DONE.

Email

If you want to receive an email when the job has finished, you can specify your email
address here. This does not yet work for master jobs.

TTL

Here you specify the maximum run-time for your job. The system then selectes a
worker node which provides the requested run time for you job.

Split:

If you want to split your job in several sub jobs, you can define a method to split the job
according to the input data (collection) or some production variables. Valid are:
file There will be one sub job per file in the InputData section.

directory All the files of one directory will be analyzed in the same sub-job.

138/199

The ALICE Offline Bible

se This should be used for most analysis. The jobs are split according
to the list of storage elements where data are located. Job <1> reads
all data at <SE1>, job <2> all data at <SE2>. You can, however,
force to split on the second level the job <1> ,<2> ... into several
jobs using the two tags SplitMaxInputFileNumber and
SplitMaxInputFileSize.

event All files with the same name of the last subdirectory will be analyzed
in the same sub job.

userdefined Check the field SplitDefinitions

Production This kind of split does not require any InputData. It will submit the

(<#start>- same JDL several times (from #start to #end). You can reference

<#end>)) this counter in SplitArguments using "#alien_counter#"

SplitArguments

You can define the argument field for each sub-job. If you want e.g. to give the sub jobs
counter produced by the Split="production:1-10" tag, you can write e.g. something like
SplitArgunents = "simun.C --run 1 --event #alien_counter#";

If you define more than one value, each sub-job will be submitted as many times as
there are items in this array, and the sub-jobs will have the element in the array as
arguments.

SplitMaxInputFileNumber

Defines the maximum number of files that are in each of the sub-jobs. For instance, if
you split per SE putting 'SplitMaxInputFileNumber=10', you can make sure that no sub-
job will have more than ten input data files.

SplitMaxInputFileSize

Similar to the previous, but puts a limit on the size of the file. The size has to be given in
bytes.

SplitDefinitions

This is a list of JDLs. If defined by the user, AliEn will take those jdIs as the sub-jobs,
and all of them will behave as if they were sub-jobs of the original job (for instance, if
the original jobs gets killed, all of them will get killed, and once all of the sub-jobs finish,
their output will be copied to the master job).

5.12Appendix Job Status

The following flow chart shows the job status transitions after you have successfully
submitted a job. It will help you to understand the meaning of the various error
conditions.

139/199

The ALICE Offline Bible

5.12.1Status Flow Diagram

Tobi Otz . Intermediary status
I:l Final status
Job Broker

Job Agent receives jobs

Job Agent does
not send heartbeat

Mg

Job Agent getsinput

Job Agent send

heartbeat
i Job Agent does
Falid 7 -
Validation? not send heartbeat
Yes ¥ No

Validation process has failed

FAILED

Job output is not valid

Job Agent copies output in SE

KILLED
From any other status, jobs
- get here when they are killed

¢ Joh Optimizer registers cutput

DONE

5.12.2Non-Error Status Explanation

In the following we describe the non-error status. The abbreviation in brackets is what
the ps command shows.

INSERTING (1)

The job is waiting to be processed by the Job Optimizer. If this is a split job, the
Optimizer will produce many sub jobs out of your master job. If this is a plain job, the
Optimizer will prepare the input sandbox for this job.

WAITING (W)

The job is waiting to be picked up by any Job Agent, that can fulfil the job requirements.
ASSIGNED (A)

A Job Agent has matched your job and is about to pick it up.

STARTED (ST)

A Job Agent is now preparing the input sandbox downloading the specified input files.
RUNNING (R)

Your executable has finally been started and is running.

140/199

The ALICE Offline Bible

SAVING (SV)

Your executable has successfully terminated, and the agent saves your output to the
specified storage elements.

SAVED (SVD)

The agent has successfully saved all the output files which are not yet visible in the
catalogue.

DONE (D)

A central Job Optimizer has registered the output of your job in the catalog.

5.12.3Error Status Explanation

ERROR_| (El) - ERROR_A (EA)

These errors are normally not based on a 'bad' user job, but arise due to service
failures.

ERROR_IB (EIB)

This is a common error which occurs during the download phase of the required input
files into the sandbox. Usually its cause is, that a certain input file does not exist in the
assumed storage element, or the storage element is not reachable from the job worker
node.

ERROR_V (EV)

The validation procedure failed, i.e. your validation script (which you have specified in
the JDL) exited with a value !'=0.

ERROR_SV (ESV)

At least one output file could not be saved as requested in the JDL. Probably, one of the
storage elements required was not available.

ZOMBIE/EXPIRED (Z/EXP)

Your job got lost on a worker node. This can happen due to a node failure or a network
interruption. The only solution is to re-submit the job.

141/199

The ALICE Offline Bible

6 197197199

199

197

142/199

The ALICE Offline Bible

6.1

6.2

6.2.1

6.2.2

143/199

The ALICE Offline Bible

6.3

199

144/199

The ALICE Offline Bible

7 Distributed analysis

7.1Abstract

In order to perform physics analysis in ALICE, a physicist has to use the GRID
infrastructure, since the data will be distributed to many sites. The machinery, though
complex due to the nature of the GRID, is totally transparent to the user who is shielded
by a friendly user interface. In order to provide some guidelines to successfully utilize
the functionalities provided, it was decided that an up-to-date manual was needed.
Here, we try to explain the analysis framework as of today taking into account all recent
developments.

After a short introduction, the general flow of a GRID based analysis will be outlined.
The different steps to prepare one’s analysis and execute it on the GRID using the
newly developed analysis framework will be covered in the subsequent sections.

7.2Introduction

Based on the official ALICE documents [197, 197], the computing model of the
experiment can be described as follows:

« Tier O provides permanent storage of the raw data, distributes them to Tier 1
and performs the calibration and alignment task as well as the first
reconstruction pass. The calibration procedure will also be addressed by
PROOF clusters such as the CERN Analysis Facility (CAF) [199]

« Tier 1s outside CERN collectively provide permanent storage of a copy of the
raw data. All Tier 1s perform the subsequent reconstruction passes and the
scheduled analysis tasks.

« Tier 2s generate and reconstruct the simulated Monte Carlo data and perform
the chaotic analysis submitted by the physicists.

The experience of past experiments shows that the typical data analysis (chaotic
analysis) will consume a large fraction of the total amount of resources. The time
needed to analyze and reconstruct events depends mainly on the analysis and
reconstruction algorithm. In particular, the GRID user data analysis has been developed
and tested with two approaches: the asynchronous (batch approach) and the
synchronous (interactive) analysis.

Before going into detail on the different analysis tasks, we would like to address the
general steps a user needs to take before submitting an analysis job:

» Code validation: In order to validate the code, a user should copy a few
AliIESDs.root or AliAODs.root files locally and try to analyze them by following
the instructions listed in section .

145/199

The ALICE Offline Bible

« Interactive analysis: After the user is satisfied from both the code sanity and the
corresponding results, the next step is to increase the statistics by submitting
an interactive job that will analyze ESDs/AODs stored on the GRID. This task is
done in such a way to simulate the behaviour of a GRID worker node. If this
step is successful then we have a high probability that our batch job will be
executed properly. Detailed instructions on how to perform this task are listed in
section .

« Finally, if the user is satisfied with the results from the previous step, a batch
job can be launched that will take advantage of the whole GRID infrastructure in
order to analyze files stored in different storage elements. This step is covered
in detail in section .

It should be pointed out that what we describe in this note involves the usage of the
whole metadata machinery of the ALICE experiment: that is both the file/run level
metadata [°] as well as the Event Tag System [*]. The latter is used extensively,
because apart from the fact that it provides an event filtering mechanism to the users
and thus reducing the overall analysis time significantly, it also provides a transparent
way to retrieve the desired input data collection in the proper format (= a chain of
ESD/AOD files) which can be directly analyzed. On the other hand, if the Event Tag
System is not used, then, apart from the fact that the user cannot utilize the event
filtering, he/she also has to create the input data collection (= a chain of ESD/AQD files)
manually.

7.3Flow of the analysis procedure

shows a schematic view of the flow of the analysis procedure. The first thing a typical
user needs to do in order to analyze events stored on the GRID, is to interact with the
file catalogue to define the collection of files that he/she needs. This action implies the
usage of the metadata fields assigned at the level of a run. Detailed description about
the structure of the file catalogue as well as the metadata fields on this level can be
found in [, *']. As an example, we have a user who wants to create a collection of tag-
files that fulfil the following criteria:

» The production year should be 2008.

e The period of the LHC machine should be the first of 2008 (LHCO08a).
e The data should come from the third reconstruction pass.

« The collision system should be p+p.

* The start and stop time of the run should be beyond the 19th of March 2008
and no later than 10:20 of the 20th of March 2008 respectively.

Then, what needs to be written in the AliEn shell (as a one line command) is:

[aliensh] find -x pp /alicel/data/2008/ LHCO8a/*/recol/ Pass3/*
*Mer ged*t ag. r oot

Run: col i si on_systenF' 'pp'' and Run:stop<''2008-03-20 10:20: 33""'
and Run:start>''2008-03-19'" > pp.xm

The previous lines make use of the find command of the alien shell [**]. The first

146/199

The ALICE Offline Bible

argument of this command is the name of the collection which will be written inside the
file (header of the xml collection). If the - x pp option is not used, we will not get back
all the information about the file but instead we will just retrieve the list of logical file
names (Ifn). Then, the path of the file catalogue where the files we want to analyze are
stored is given, followed by the name of the file. In this example, the path implies that
the user requests a collection of real data (/ al i ce/ dat a) coming from the first period
of the LHC machine in year 2008 (/ 2008/ LHC08a), containing all the run numbers of
the third pass of the reconstructed sample (/ */ r eco/ Pass3). The last argument is the
list of metadata fields: a variety of such fields can be combined using logical
statements. The reader should notice that the output of this command is redirected to
an xml file, which consists of all the necessary information (the file's unique identifier -
guid, the logical file name etc) about the files that fulfil the imposed selection criteria.
This xml collection, which is stored in the local working directory, plays a very important
role in the overall distributed analysis framework, as we will see in the following
sections. From the above example it is obvious that wild cards can be used.

Going back to the description of and following the flow of the arrows, we assume that
the user creates a tag xml collection. Then, in parallel inside a macro he/she imposes
some selection criteria at the event level. Having those two components as an input, the
Event Tag System is queried and from this action, the system can either provide directly
the input data collection, which is a chain of ESD/AOD files along with the associated
event list (which describes the events that fulfil the imposed selection criteria), or a new
ESD/AOD xml (different to the tag xml collection discussed earlier) collection (mainly
used for batch analysis — see section for details). Even in the latter case, we end up
having the chain along with the associated event list. This chain can then be processed
by an analysis manager [199] either locally, in AliEn [197], or using PROOF [198].

147/199

The ALICE Offline Bible

Query the Tag xml
file catalog collection e T —
¥
Query the Selection
Event Tag System criteria
Orentean Extract an

Local

AliEn

PROOF

Bam— D00]

esdTree chain :
collection

Process chain
with manager

'\
/

Figure 17: The flow of the analysis procedure: Having as an input the tag xml collection
that we create by querying the file catalogue and the selection criteria, we interact with
the Event Tag System and we either get a chain along with the associated event list

(events

that fulfil the imposed selection criteria) or we create an ESD xml collection (for

batch sessions) from which we create the ESD chain. This chain is processed with an
analysis manager locally, in AliEn or even in PROOF.

We would also like to point out that we have two options on how to use the framework:

We can work with AliRoot and try all the examples that will be described in the
next sections by loading all the corresponding libraries.

We can try to be as flexible as possible, by running ROOT along with the
corresponding AliRoot libraries (e.g. in the case of the analysis of AIESDs.root
or/and AliAODs.root we need the libSTEERBase.so, libESD.so, libAOD.so
along with the libANALYSIS.so - the latter is needed for the new analysis
framework which will be described in the next section). These libraries are
created from the compilation of the relevant AliRoot code which can be included
in the so-called par fil e. This par file is nothing more than a tarball
containing the .h and .cxx aliroot code along with the Makefile and
Makefile.arch (needed to compile the AliRoot code in different platforms).

The user has these two possibilities, although for the following examples, we will
concentrate on the case where we use the par fil es. The lines listed below show

how we

can setup, compile and load the libESD.so from the ESD.par.

const char* pararchi vename = "ESD";
/1 Setup PAR File
i f (pararchivenanme) {

148/199

The ALICE Offline Bible

char processline[1024];

sprintf(processline,".! tar xvzf %.par", pararchivenane);
gROOT- >Pr ocessLi ne(processline);

const char* ocwd = gSystem >Worki ngDi rectory();

gSyst em >ChangeDi r ect or y(par ar chi venane) ;

/'l check for BULD. sh and execute
if (!gSystem >AccessPat hName(" PROCF-1 NF/ BUI LD. sh")) {

pl’l ntf(”*******************************\n”);

printf("*** Building PAR archive ***\n");

pl’l ntf("*******************************\n");

if (gSystem >Exec("PROOF-1NF/ BU LD.sh")) {
Error("runProcess","Cannot Build the PAR Archive! - Abort!");
return -1;

}
/1 check for SETUP.C and execute
if (!gSystem >AccessPat hNanme(" PROOF-1 NF/ SETUP. C')) {

prl ntf("*******************************\n");

printf("*** Setup PAR archive *rxE\n");

prl ntf("*******************************\n");

gROOT- >Macr o(" PROOF- | NF/ SETUP. C') ;

gSyst em >ChangeDi rectory("../");
}
gSystem >Load("li bVMC. so");
gSystem >Load("|i bESD. so");

7.4Analysis framework

Recently, a new attempt has started that led to the development of a new analysis
framework [199]. By the time this note was written, the framework has been validated in
processes that concern this document (GRID analysis). We will review the basic
classes and functionalities of this system in this paragraph (for further details the reader
should look in []).

The basic classes that constitute this development are the following (we will give a full
example of an overall implementation later):

« AliAnalysisDataContainer: The class that allows the user to define the basic
input and output containers.

« AliAnalysisTask: This is the class the lines of which should be implemented by
the user. In the source file we can write the analysis code.

« AliAnalysisManagetr: Inside such a manager the user defines the analysis
containers, the relevant tasks as well as the connection between them.

A practical example of a simple usage of this framework is given below where we
extract a py spectrum of all charged tracks (histogram) from an ESD chain (the

149/199

The ALICE Offline Bible

examples can be found under the Anal ysi sMacros/ Local / directory of the PWG2
module of AliRoot).

AliAnalysisTaskPt.h
#i f ndef Ali Anal ysi sTaskPt _cxx
#define Ali Anal ysi sTaskPt_cxx

/'l exanple of an analysis task creating a p_t spectrum

/1 Authors: Panos Cristakogl ou, Jan Fiete G osse-Cetringhaus,
Christian Kl ein-Boesing

cl ass THLF;
class Al i ESDEvent;

#i ncl ude "Ali Anal ysi sTask. h"

class Ali Anal ysi sTaskPt : public AliAnal ysisTask {
publi c:
Al'i Anal ysi sTaskPt (const char *name = "Ali Anal ysi sTaskPt");
virtual ~Ali Anal ysisTaskPt() {}

virtual void Connect | nput Dat a(Option_t *);
virtual void Cr eat eQut put Obj ects();
virtual void Exec(Option_t *option);
virtual void Term nate(Option_t *);

private:
Al i ESDEvent *f ESD; /1 ESD obj ect
TH1F *fH stPt; //Pt spectrum

Al'i Anal ysi sTaskPt (const Ali Anal ysi sTaskPt&); // not inplenented

Al'i Anal ysi sTaskPt & operat or=(const Ali Anal ysi sTaskPt&); // not
i mpl emrent ed

Cl assDef (Ali Anal ysi sTaskPt, 1); // exanple of analysis
b

#endi f

AliAnalysisTaskPt.cxx

"
"
i
"

ncl ude "TChai n. h"
ncl ude "TTree. h"
ncl ude "THL1F. h"
ncl ude "TCanvas. h"

#i
#i

ncl ude "Ali Anal ysi sTask. h"
ncl ude "Ali Anal ysi sManager. h"

#i
#i

ncl ude "Al i ESDEvent. h"
ncl ude "Al i ESDI nput Handl er. h"

#i

ncl ude "Ali Anal ysi sTaskPt. h"

150/199

The ALICE Offline Bible

/'l exanple of an analysis task creating a p_t spectrum

/1 Authors: Panos Cristakogl ou, Jan Fiete Grosse-Cetringhaus, Christian
Kl ei n- Boesi ng

Cl assl np(Ali Anal ysi sTaskPt)

/1

Ali Anal ysi sTaskPt: : Ali Anal ysi sTaskPt (const char *name)
Al'i Anal ysi sTask(nane, ""), fESD(0), fH stPt(0) {
/1 Constructor

/1 Define input and output slots here

/1 Input slot #0 works with a TChain

Def i nel nput (0, TChain::d ass());

/1 Qutput slot #0 wites into a TH1l contai ner
Def i neCut put (0, THLF::C ass());

I

voi d Ali Anal ysi sTaskPt:: Connect | nputData(Option_t *) {
// Connect ESD or AQD here
/! Called once

TTree* tree = dynam c_cast <TTree*> (GetlnputData(0));

if (ltree) {
Printf("ERROR Could not read chain frominput slot 0");
} else {

/1 Disable all branches and enable only the needed ones

/1 The next two lines are different when data produced as
Al'i ESDEvent is read

tree->Set BranchStatus("*", kFALSE);
tree->Set BranchSt atus("f Tracks. *", kTRUE);

Al i ESDI nput Handl er *esdH = dynam c_cast <Al i ESDI nput Handl er *>
(Al'i Anal ysi sManager : : Get Anal ysi sManager () - >Get | nput Event Handl er ());

if (lesdH) {
Printf("ERROR Could not get ESDI nputHandler");
} else
f ESD = esdH >Get Event () ;
}
}
I

voi d Ali Anal ysi sTaskPt: : Creat eQut put Cbj ects() {
/1 Create histograns
/1 Called once

fH stPt = new THIF("fH stPt", "P_{T} distribution", 15, 0.1, 3.1);

151/199

The ALICE Offline Bible

fHi stPt->Cet Xaxi s()->SetTitle("P_{T} (GeV/ic)");
fH stPt->CGetYaxis()->SetTitle("dNdP_{T} (c/GV)");
fH stPt->Set Marker Styl e(kFul Il Gircle);

I

void Ali Anal ysi sTaskPt:: Exec(Option_t *) {
/1 Main |oop
/1 Called for each event

if ('fESD {
Printf("ERROR fESD not avail able");
return;

}

Printf("There are %l tracks in this event", fESD >Get Nunmber Of Tr acks
0);

/1 Track loop to fill a pT spectrum
for (Int_t iTracks = 0; iTracks < fESD >Get Nunmber O Tracks();
i Tracks++) {
Al i ESDtrack* track = fESD >Get Track(i Tracks);
if (!track) {
Printf("ERROR Could not receive track %", iTracks);
conti nue;

fH stPt->Fill (track->Pt());
} //track | oop
/1 Post output data.

Post Dat a(0, fHistPt);

I

void Ali Anal ysi sTaskPt:: Term nate(Option_t *) {
// Draw result to the screen
/1 Called once at the end of the query

fH stPt = dynami c_cast <THLF*> (Get Qut put Dat a(0));
if (MfHstPt) {

Printf("ERROR fHi stPt not available");

return;

TCanvas *cl = new TCanvas("Ali Anal ysi sTaskPt","Pt", 10, 10, 510, 510);
cl->cd(1)->Set Logy();
fH st Pt->DrawCopy("E");

152/199

The ALICE Offline Bible

The AliAnalysisTaskPt is a sample task that inherits from the AliAnalysisTask class.

The main functions that need to be implemented are the following:

("

Basic constructor: Inside the constructor we need to define the type of the input
(if any input is to be used) as well as of the output of the task (in our example
the input is of the form of a ROOT's TChai n while the output is a histogram —
THLF).

Connect | nput Dat a Inside this function we need to initialize the input objects
(get the TTree and the AIESDEvent object).

Cr eat eCut put Obj ect s Create the output objects that will be written in the
file (in our example we create the output histogram).

Exec: The place where the analysis code should be implemented.

Ter i nat e: The function inside of which we can draw histograms (as in our
example) or perform any kind of actions (like merging of output).

Macro that creates an AliAnalysisManager

I I

/] Make the anal ysis nmanager

Al'i Anal ysi sManager *ngr = new Al i Anal ysi sManager (" Test Manager") ;
Al'i VEvent Handl er* esdH = new Al i ESDI nput Handl er;

ngr - >Set | nput Event Handl er (esdH) ;

I I

/1 1st Pt task

Ali Anal ysi sTaskPt *taskl = new Ali Anal ysi sTaskPt (" TaskPt");

nmgr - >AddTask(t askl);

/1 Create containers for input/output

Al'i Anal ysi sDat aCont ai ner *ci nputl = ngr->Creat eCont ai ner
cchai n1", TChai n: : G ass(), Al i Anal ysi sManager : : kl nput Cont ai ner) ;

Al'i Anal ysi sDat aCont ai ner *coutputl = ngr->CreateContainer("chistl",

THL: : A ass(), Ali Anal ysi sManager : : kQut put Cont ai ner, "Pt. ESD. root") ;

11 /1
ngr - >Connect | nput (taskl, O, ci nput 1) ;

nmgr - >Connect Cut put (taskl, 0, cout put 1) ;

if (!I'ngr->InitAnalysis()) return;

nmgr->Print Status();

nmgr - >St art Anal ysi s("l ocal ", chai n);

In the previous lines, we first created a new analysis manager:

Ali Anal ysi sManager *nmgr = new Al i Anal ysi sManager (“ Test Manager”);

The next step is to set the input event handler which will allow us to retrieve inside our
task a valid esd/aod object (in our example we get an AIESDEvent):

Al'i VEvent Handl er* esdH = new Al i ESDI nput Handl er () ;
ngr - >Set | nput Event Handl er (esdH) ;

We then created a new AliAnalysisTaskPt object giving it a name and we assigned it

to the manager:

153/199

The ALICE Offline Bible

Ali Anal ysi sTaskPt *taskl = new Al i Anal ysi sTaskPt (" TaskPt");
ngr - >AddTask(t askl);

Then, the input and output containers were created and their types defined:

Al i Anal ysi sDat aCont ai ner *ci nputl = ngr->Creat eContai ner("cchai nl",
TChai n:: d ass(), Al i Anal ysi sManager : : kl nput Cont ai ner) ;

Al i Anal ysi sDat aCont ai ner *cout putl = ngr->CreateContai ner("chistl",
THL: : d ass(), Al i Anal ysi sManager : : kQut put Cont ai ner, " Pt . ESD. root ") ;

The next step was to link the task with the corresponding input and output container
while setting the created chain of files (in the following section we will review how we
can create this chain) to our input:

nmgr - >Connect | nput (t askl, O, ci nput 1) ;

ngr - >Connect Qut put (t askl, 0, cout put 1) ;

Finally, we process the chain with the manager
nmgr - >St art Anal ysi s(“l ocal ", chai n);

In order to give the user an idea of how the framework could look like in a complicated
example, we provide and . In, we show the flow of a typical analysis process:

Typical analysis flow

4

[col ef‘[lon 0 /@Emparison of OUT1 & OUT?\\

: J/ Simulated J7
TAGS ?‘éo*nd%%?fg "5”?%% N /ﬁea".»%';""@?aﬁ sf%*;wu\
[and objects) |
50 _‘_ Sk /_/ \ ouT2 y
/ Input cham _; B — T o
\ > I ==
J Real/Si ujafed' 'Re_aI‘/SimulfJ’red
analysis mixing analysis
! Loop over \. .) .
champen'rmes _ : _ I
'Real/Simulated | ' Laop over
mixing = chcun entries
/Output of mixing: <.
P £1°Y
l — Input chain)
\ AQOD 3 \\x“ '//

Figure 18: The flow of a typical physics analysis.

A user interacts with the file catalogue and creates a tag collection (the reader should
check section for the instructions on how to perform this action). Then, the Event Tag
System is queried (details on how we can do this will be provided in the next sections)
and a chain of files is created. While looping through the entries of this chain, we split
our analysis into two branches. On the first of, we analyze the (real or simulated) data
and we provide as a last step an output ROOT file with histograms. On the second

154/199

The ALICE Offline Bible

branch, we mix the events (event mixing method) in order to express our background.
This second branch creates an output of the form of an Analysis Object Data
(AOD) [197]. A new chain is then created from this AOD and after analyzing the
corresponding entries (analysis of mixed events), the output ROOT file with the relevant
histograms is created. Finally, a last process is launched that compares the two output
ROOQOT files and extracts the studied signal.

shows how we can integrate the previous use case to the new framework. The first

steps are identical: A user interacts with the file catalogue and creates a tag collection
(as described in section), which is used as an input to query the Event Tag System and
create a chain of files. This chain is the first input container and is assigned to the
AliAnalysisManager. In parallel, we define two tasks which are also assigned to the
manager and are both linked to the same input container (chain): The first one analyzes
the input data and creates an output container (ROOT file with histograms - signal +
background plots), while the second is designed to mix the events and create a second
output container (AOD). In order to analyze our mixed events, we initialize a second
analysis manager that links the input container (AOD) with the new task (analysis of
mixed events) and create a third output container (ROOT file with histogram -
background plots). Finally, the comparison task is added to the second manager. This
task is triggered by the ending of the analysis of mixed events and takes two input
containers (ROOT files having the signal + background plots and the pure background
plots) while creating one output (extracted signal).

Integration in the new framework

| Col}le}g”lon @ SRR SN B (B E;\/
R — - cSutput
Coh‘l'aﬁ'le.r‘] Co%; ;Frllgr' 4 ConTu ner3
ROOT file 0OT file
fr'om cmnlyms k____c°mP°""5°'_‘_____, romy. y's)i(smg
TASK1[]
e analysis
c ITn:,uf 1 ‘ Pa— TASK 4 TASK 3
ontdiner — ; ——| s ;
CHAIN TASK 2 Comparison | Mixing analysis
- mixing l
- = _Input _
P ow Container2
ontain
CHAI
AOD (from A%D)

Figure 19: This figure shows how the physics analysis described in can be integrated
in the new framework.

In the next paragraphs, we will be using the simplest possible case of manager and

155/199

The ALICE Offline Bible

task, which has been described, at the beginning of this section.

7.5Interactive analysis with local ESDs

We assume that you have stored a few ESDs or AODs locally (the way to do this is
described in detail in []), and that the first step regarding the creation of the tag-files,
which are also stored locally (under pat h), for these ESDs/AODs has been finished [].

We setup the par file (see section for details) and then we invoke the following
lines that summarize what we have to do in order to analyze data stored locally using
the Event Tag System:

To specify cuts, we either do

Al i RunTagCuts *runCutsCbj = new Ali RunTagCuts();
runCut sObj - >Set Runl d(340) ;
/1 add nore run cuts here...

Al i LHCTagCuts *l hcCutsObj = new Ali LHCTagCuts();
| hcCut sQbj - >Set LHCSt at us(“test”);

Al i Det ect or TagCuts *det CutsCbj = new Al i Detector TagCuts();
det Cut s(hj - >Set Li st Of Det ect ors(“TPC") ;

Al i Event TagCuts *evCutsObj = new Al i Event TagCuts();
evCut shj ->Set Mul tiplicityRange(2, 100);
/1 add nore event cuts here...

or we use

const char *runCutsStr "fAiceRunld == 340";

const char *lhcCutsStr = "fLHCTag. fLHCState == test";

const char *detCutsStr "fDetectorTag. fTPC == 1";

const char *evCutsStr = "fEventTag.fNunber O Tracks >= 2 &&
f Event Tag. f Nunmber Of Tracks <= 100";

/1 extend the strings to apply nore cuts

Then, we chain the tag-files (keep in mind that the tag-files in this example are stored
locally under pat h), we query the Event Tag System according to your cuts provided
and we follow the example shown in section to create a manager and a task:

Al i TagAnal ysi s *tagAna = new Al i TagAnal ysi s(“ESD");
t agAna- >Chai nLocal Pat hs(“path”);

TChain *chain = tagAna->QueryTags(runCutsObj, | hcCutsj,
det Cutshj, evCutshj);

[/ TChain *chain = tagAna->QueryTags(runCutsStr, |hcCutsStr,
det CutsStr, evCutsStr);

/1 /1
/] Make the anal ysis manager

Ali Anal ysi sManager *ngr = new Al i Anal ysi sManager
(" Test Manager");

Al'i VEvent Handl er* esdH = new Al i ESDI nput Handl er;
ngr - >Set | nput Event Handl er (esdH) ;

156/199

The ALICE Offline Bible

I I

/1 1st Pt task

Ali Anal ysi sTaskPt *taskl = new Al i Anal ysi sTaskPt (" TaskPt");
nmgr - >AddTask(t askl);

/1 Create containers for input/output

Al i Anal ysi sDat aCont ai ner *ci nputl = ngr->Creat eCont ai ner
("cchai nl", TChai n: : d ass(), Al'i Anal ysi sManager : : kl nput Cont ai ner) ;

Al'i Anal ysi sDat aCont ai ner *cout putl = ngr->Creat eCont ai ner
"chist1l", THL::d ass(),
i Anal ysi sManager : : kQut put Cont ai ner, "Pt. ESD.root");

>

I I
nmgr - >Connect | nput (taskl, O, ci nput 1) ;

ngr - >Connect Qut put (taskl, 0, cout put 1) ;

if (!'mgr->InitAnalysis()) return;

nmgr->Print Status();

nmgr - >St art Anal ysi s(“l ocal ", chai n);

There are two possible ways to impose run- and event-cuts. The first is to create the
objects, called AliRunTagCuts, AliLHCTagCuts, AliDetectorTagCuts and
AliEventTagCuts, whose member functions will take care of your cuts. The second is
to provide the strings that describe the cuts you want to apply on the run and on the
event level. In the following we will describe both methods.

7.5.1 Object based cut strategy

The first step in the object based cut strategy is to create an AliRunTagCuts,
AliLHCTagCuts, AliDetectorTagCuts and an AliEventTagCuts object:

Al i RunTagCuts *runCutsObj = new Ali RunTagCuts();

Al i LHCTagCuts *l hcCutsObj = new Ali LHCTagCuts();

Al i DetectorTagCuts *det CutsGhj = new Al i DetectorTagCuts();
Al i Event TagCuts *evCutsObj = new Al i Event TagCuts();

These objects are used to describe the cuts imposed to your analysis, in order to
reduce the number of runs and events to be analyzed to the ones effectively satisfying
your criteria. There are many selections possible and they are provided as member
functions of the two classes AliRunTagCuts, AliLHCTagCuts, AliDetectorTagCuts
and AliEventTagCuts class. In case the member functions describe a range of an
entity, the run, LHC status, detector configuration or event will pass the test if the
described entity lies inclusively within the limits | ow < val ue < hi gh. In case of only
one argument, the run or event will pass the test if the entity is equal to the input flag or
mask (val ue == fl ag, val ue == nask) or, in case of a 'Max' or 'Min' identifier, if
the run or event quantity is lower or equal (quantity < val ue) or higher or equal
(quantity = val ue) than the provided value. A full list of available run and event cut
functions can be found in Appendix\,\ref{App:ObjectCuts}.

Let us consider only a cut on the run number, a cut on the LHC status, a cut on the
detector configuration and one on the multiplicity: All events with run-numbers other
than 340, with LHC status other than “test”, with the TPC not included and with less
than 2 and more than 100 particles will be discarded.

r unCut sQbj - >Set Runl d(340) ;

157/199

The ALICE Offline Bible

| hcCut sObj - >Set LHCSt at us(“test”);
det Cut sQhj - >Set Li st Of Det ectors(“TPC") ;
evCut sObj - >Set Mul ti plici tyRange(2, 100);

You can add as many other cuts as you like here.

7.5.2 String based cut strategy

Contrary to the object based cut strategy, you also have the possibility to provide your
desired cut criteria as strings. You can do that by creating two separate strings, one for
the run cuts and one for the event cuts. The syntax is based on C and the string is later
evaluated by the TTreeFormula mechanism of ROOT. Therefore a wide range of
operators is supported (see the ROOT manual [] for details). The variables used to
describe the run and event properties are the data members of the AliRunTagCuts,
AliLHCTagCuts, AliDetectorTagCuts and the AliEventTagCuts classes. Because
of the enhanced number of available operators, this system provides more flexibility.

In order to create the same cuts as in the object based example above, the two strings
should look like this:

const char *runCutsStr "fAli ceRunld == 340";

const char *lhcCutsStr = "fLHCTag. fLHCState == test";

const char *detCutsStr = "fDetectorTag.fTPC == 1";

const char *evCutsStr = "fEventTag. f Number Of Tracks >= 2 &&
f Event Tag. f Nunber Of Tracks <= 100";

The full list of available data members to cut on can be found in Appendix\\ref
{App:StringCuts}. Within the quotes you can easily extend your cut statements in C
style syntax.

Regardless of the way you choose to define your cuts, you create an AliTagAnalysis
object, which is responsible to actually perform your desired analysis task.
Al'i TagAnal ysi s *TagAna = new Al i TagAnal ysi s(“ESD") ;

You have to provide this object with the locally stored tags since we assumed at the
beginning of this section that these files were created and were stored locally (in the
next section we will see how we can use the Grid stored tags). In order to do this you
have to specify the correct path where the tag file(s) is/are located

t agAna- >Chai nLocal Tags("pat h");

This function will pick up every file under the given path ending with t ag. r oot . Now
you ask your AliTagAnalysis object to return a TChain, imposing the event cuts as
defined in the AliRunTagCuts, AliLHCTagCuts, AliDetectorTagCuts and
AliEventTagCuts objects or by the two strings representing the run and event tags:

TChain *chain = tagAna->QueryTags(runCutsObj, |hcCutsChj, detCutsCbj,
evCut sQbj) ;

TChain *chain = tagAna->QueryTags(runCutsStr, |hcCutsStr, detCutsStr,
evCutsStr);

The two arguments must be of the same type: two Ali*TagCuts objects or two strings! If
you don't want to impose run- or event-cuts, simply provide a NULL pointer.

158/199

The ALICE Offline Bible

Finally, you process the TChain by invoking your analysis manager with the following
line of code:

11 /1

/1 Make the anal ysis manager

Al'i Anal ysi sManager *mgr = new Al i Anal ysi sManager

(" Test Manager");

Ali VEvent Handl er* esdH = new Al i ESDI nput Handl er;

nmgr - >Set | nput Event Handl er (esdH) ;

11 /1

/1 1st Pt task

Al'i Anal ysi sTaskPt *taskl = new Ali Anal ysi sTaskPt (" TaskPt");

ngr - >AddTask(t askl) ;

/1 Create containers for input/output

Al'i Anal ysi sDat aCont ai ner *ci nputl = ngr->Creat eCont ai ner
("cchai nl", TChai n: : C ass(), Al'i Anal ysi sManager : : kl nput Cont ai ner) ;

Al'i Anal ysi sDat aCont ai ner *cout putl = ngr->CreateContai ner
("chist1l", THL::d ass(),
Al'i Anal ysi sManager : : kQut put Cont ai ner, "Pt. ESD.root");

I I
nmgr - >Connect | nput (t askl, 0, ci nput1);

nmgr - >Connect Qut put (t askl, 0, cout put 1) ;

if (!mgr->InitAnalysis()) return;

nmgr->Print St atus();

ngr - >St art Anal ysi s(“l ocal ", chai n);

One thing to mention is that even in case you do not want to imply any run- and event-
cuts, it is useful to use the chain of commands described above. You would then simply
pass two NULL pointers to the AliTagAnalysis class. The advantage of this procedure
is that this setup takes care of chaining all the necessary files for you.

All the files needed to run this example can be found inside the PWG2 module of
AliRoot under the AnalysisMacros/Local directory.

7.6Interactive analysis with GRID ESDs

Once the first step described in Section was successful and we are satisfied from both
the code and the results, we are ready to validate our code on a larger data sample. In
this section, we will describe how we can analyze interactively (that is sitting in front of a
terminal and getting back the results in our screen) files that are stored in the Grid. We
will once again concentrate on the case where we use the Event Tag System [,].

The first thing we need to create is a collection of tag-files by querying the file catalogue
(for details on this process the reader should look either in the example of section or
in [,]). These tag-files, which are registered in the Grid, are the official ones created as
a last step of the reconstruction code []. Once we have a valid xml collection, we launch
a ROOQT session, we setup the par fil es (the way to do this has been described in
detail in section), we apply some selection criteria and we query the Event Tag System
which returns the desired events in the proper format (a TChain along with the
associated list of events that satisfy our cuts). The following lines give a snapshot of
how a typical code should look like:

159/199

The ALICE Offline Bible

Usage of AliRunTagCuts, AliLHCTagCuts, AliDetectorTagCuts and
AliEventTagCuts classes

/1 Case where the tag-files are stored in the file catal og

/1 tag.xm is the xm collection of tag-files that was produced
/1 by querying the file catal og.

TGid:: Connect("alien://");

TAl i enCol | ection* coll = TAlienCollection::Open("tag. xm");

TG idResult* tagResult = coll->GetGidResult("",0,0);

/1 Create a RunTagCut object
Al i RunTagCuts *runCutsObj = new Ali RunTagCuts();
runCut sQbj - >Set Runl d(340) ;

/1 Create a LHCTagCut object
Al i LHCTagCuts *I hcCutsObj = new Ali LHCTagCuts();
| hcCut sQhj - >Set LHCSt at us(“test”);

/1 Create a DetectorTagCut object
Al i DetectorTagCuts *det CutsChj = new Ali DetectorTagCuts();
det Cut sbj - >Set Li st Of Det ect ors(“TPC’) ;

/1 Create an Event TagCut obj ect
Al i Event TagCuts *evCutsObj = new Al i Event TagCuts();
evCut sQhj - >Set Mul ti plicityRange(2, 100);

/1l Create a new Ali TagAnal ysis object and chain the grid stored tags
Al i TagAnal ysi s *tagAna = new Al i TagAnal ysi s(“ESD");
t agAna- >Chai nGri dTags(tagResul t);

/1 Cast the output of the query to a TChain
TChain *chain = tagAna->QueryTags(runCutsObj, |hcCutshj, detCutsOhj,

evCut snj) ;

("

I I

/1 Make the anal ysis manager

Ali Anal ysi sManager *ngr = new Al i Anal ysi sManager (" Test Manager") ;
Al i VEvent Handl er* esdH = new Al i ESDI nput Handl er;

ngr - >Set | nput Event Handl er (esdH) ;

I I

/] 1st Pt task

Al'i Anal ysi sTaskPt *taskl = new Al i Anal ysi sTaskPt (" TaskPt");

nmgr - >AddTask(t askl);

/1l Create containers for input/output

Al'i Anal ysi sDat aCont ai ner *ci nputl = ngr->Creat eCont ai ner
cchai n1", TChai n: : G ass(), Al i Anal ysi sManager : : kl nput Cont ai ner) ;

Al'i Anal ysi sDat aCont ai ner *coutputl = ngr->CreateContainer("chistl",

THL:: d ass(), Al i Anal ysi sManager : : kQut put Cont ai ner, " Pt. ESD. root");

11 /1
ngr - >Connect | nput (taskl, 0, ci nput 1) ;

nmgr - >Connect Cut put (t askl, 0, cout put 1) ;

if (!'ngr->InitAnalysis()) return;

ngr->Print Status();

160/199

The ALICE Offline Bible

ngr - >St art Anal ysi s(“l ocal ", chai n);

Usage of string statements
/1 Case where the tag-files are stored in the file catal og
/1 tag.xm is the xm collection of tag-files that was produced
/1 by querying the file catal og.
TGid:: Connect("alien://");
TAl i enCol | ection* coll = TAlienCollection::Open("tag. xm");
TG idResult* tagResult = coll->GetGidResult("",0,0);

/' Usage of string statements//

const char* runCutsStr = "fAliceRunld == 340";

const char *lhcCutsStr = "fLHCTag. fLHCState == test";

const char *detCutsStr = "fDetectorTag.fTPC == 1";

const char* evCutsStr = "fEvent Tag. f Nunber O Tracks >= 2 &&

f Event Tag. f Nunber Of Tracks <= 100";

/1 Create a new Ali TagAnal ysis object and chain the grid stored tags
Al i TagAnal ysi s *tagAna = new Al i TagAnal ysi s(“ESD");
t agAna- >Chai nGri dTags(tagResul t);

/1 Cast the output of the query to a TChain
TChain *chain = tagAna->QueryTags(runCutsStr, |hcCutsStr, detCutsStr,

evCutsStr);

("

I I

/1 Make the anal ysis manager

Al'i Anal ysi sManager *ngr = new Al i Anal ysi sManager (" Test Manager");
Al i VEvent Handl er* esdH = new Al i ESDI nput Handl er;

ngr - >Set | nput Event Handl er (esdH) ;

I I

/1 1st Pt task

Al'i Anal ysi sTaskPt *taskl = new Ali Anal ysi sTaskPt (" TaskPt");

nmgr - >AddTask(t askl);

/1l Create containers for input/output

Al'i Anal ysi sDat aCont ai ner *ci nput1l = ngr->Creat eCont ai ner
cchai n1", TChai n: : O ass(), Al i Anal ysi sManager : : kl nput Cont ai ner) ;

Al i Anal ysi sDat aCont ai ner *coutputl = ngr->CreateContai ner("chistl",

THL1:: d ass(), Ali Anal ysi sManager : : kQut put Cont ai ner, "Pt. ESD. root") ;

I I
nmgr - >Connect | nput (t askl, O, ci nput 1) ;

nmgr - >Connect Qut put (taskl, 0, cout put 1) ;

if (!'mgr->InitAnalysis()) return;

nmgr->Print Status();

nmgr - >St art Anal ysi s(“l ocal ", chai n);

We will now review the previous lines. Since we would like to access Grid stored files,
we have to connect to the API server using the corresponding ROOT classes:
TGid:: Connect("alien://");

161/199

The ALICE Offline Bible

Then, we create a TAlienCollection object by opening the xml file (tag.xml) and we
convert it to a TGridResult:

TAl i enCol | ection* coll = TAlienCollection::Open("tag. xm");
TG idResult* tagResult = coll->GetGidResult("",0,0);

where tag. xm is the name of the file (which is stored in the working directory)
containing the collection of tag-files.

The difference of the two cases is located in the way we apply the event tag cuts. In the
first case, we create an AliRunTagCuts, AliLHCTagCuts, AliDetectorTagCuts and
an AliEventTagCuts object and impose our criteria at the run- and event-level of the
Event Tag System, while in the second we use the string statements to do so. The
corresponding lines have already been described in the previous section.

Regardless of the way we define our cuts, we need to initialize an AliTagAnalysis
object and chain the GRID stored tags by providing as an argument to the
Chai nGri dTags function the TGridResult we had created before

Al'i TagAnal ysi s *tagAna = new Al i TagAnal ysi s(“ESD") ;
t agAna- >Chai nGri dTags(tagResul t);

We then query the Event Tag System, using the imposed selection criteria and we end
up having the chain of ESD files along with the associated event list (list of the events
that fulfil the criteria):

TChain *chain = tagAna->QueryTags(runCutsObj, |hcCutsChj, detCutsCbj,
evCut sQj) ;

for the first case (usage of objects), or

TChai n *chain = tagAna->QueryTags(runCutsStr, |hcCutsStr, detCutsStr,
evCutsStr);

for the second case (usage of sting statements).

Finally we process the TChain by invoking our implemented task using a manager:
11 /1
/1 Make the anal ysis manager
Al'i Anal ysi sManager *mgr = new Al i Anal ysi sManager (" Test Manager");
Ali VEvent Handl er* esdH = new Al i ESDI nput Handl er;
nmgr - >Set | nput Event Handl er (esdH) ;
11 /1
/1 1st Pt task
Al'i Anal ysi sTaskPt *taskl = new Ali Anal ysi sTaskPt (" TaskPt");
ngr - >AddTask(t askl) ;
/1 Create containers for input/output

Al'i Anal ysi sDat aCont ai ner *ci nputl = ngr->Creat eCont ai ner
("cchainl", TChai n:: d ass(), Al'i Anal ysi sManager : : kl nput Cont ai ner) ;

Al'i Anal ysi sDat aCont ai ner *cout putl = ngr->CreateContainer("chistl",
THL: : d ass(), Al i Anal ysi sManager : : kQut put Cont ai ner, "Pt. ESD.root") ;

I I
nmgr - >Connect | nput (t askl, O, ci nput 1) ;

nmgr - >Connect Qut put (t askl, 0, cout put 1) ;

if (!'mgr->InitAnalysis()) return;

ngr->Print Status();

162/199

The ALICE Offline Bible

mgr->StartAnalysis(“local”,chain);

All the files needed to run this example can be found inside the PWG2 module of
AliRoot under the AnalysisMacros/Interactive directory.

7.7Batch analysis

In this section, we will describe the batch framework. We will first describe the flow of
the procedure; we dedicate a sub-section to describe in detail the integration of the
Event Tag System in the batch sessions. We will then use the next paragraphs to
describe in detail the files needed to submit a batch job as well as the jdI syntax. Finally,
we will provide a snapshot of a jdl and we will mention how we can submit a job on the
grid and how we can see at any time its status.

7.7.1 Overview of the framework

<collection*
F.C HUERY, <event>., guid="asdf1"., Ifn="/alice/cern ch/.. /filel root” Ny
— <event>,..guid="osdf2",..Ifn="/alice/cern.ch/.../file2.root” g
0 < t>...guid="asdf3"...Ifn="/alice/cern.ch/.../file3.root” e
JDL::InputDataCollection bt R Job Optimiser
Splitting
JDL::InputData l JDL::InputData JDL::InputData I
<collectionl » <collectionl » :
iy et <collectionl » .) .
Ifn="/alice/.. ./filel root” Ifn="/alice/.../file2 reot" cevent> fn="/alice/.../file3.root

«/collectionl > </collectionl > </collectionl »

b / Y v r =, > - o
JOB 0 » TAlienCollection o »= TAlienCollection e * TAlienCollection

ANGENT

A & A

ROOT
, RoOOT , RooT , ROOT

execution execution execution
. A &

= i) aEi»y) ()

Figure 20: A schematic view of the flow of analysis in a batch session. Following the
arrows, we have the initial xml collection that is listed in the jdl as an

I nput Dat aCol | ecti on field. The optimizer takes this xml and splits the master job
into several sub-jobs while in parallel writing new xml collections on every worker node.
Then the respective job agents on every site start a ROOT or AliRoot session, read
these new xml collections and interact with the xroot servers in order to retrieve the
needed files. Finally, after the analysis is completed, a single output file is created for
every sub-job.

XROOTD

shows the flow of a batch session [|. We start, as we have explained in section , by

163/199

The ALICE Offline Bible

querying the file catalogue and extracting a collection of files. This collection will be
referenced by our jdl as an | nput Dat aCol | ect i on field. Once we have created our
jdl (a detailed description of the jdl syntax comes in the next sections) and all the files
listed in it are in the proper place, we submit the job. The optimizer of the AliEn task
queue parses the xml file and splits the master job into several smaller ones, each one
assigned to a different site. In parallel, a new xml collection is written on every site,
containing the information about the files to be analyzed on every worker node. This
new collection will be noted in our jdl as an | nput Dat aLi st field.

The corresponding job agent of every site starts the execution of the ROOT (in case we
use the combination ROOT + par file) or AliRoot session, parses this new xml
collection and interacts with the xrootd servers in order to retrieve the files that are
listed inside these collections from the storage system. The analysis of these different
sets of files results into the creation of several output files, each one containing the
output of a sub-job. The user is responsible to launch a post-process that will loop over
the different output files in order to merge them (an example on how to merge output
histograms will be described in the next section).

7.7.2 Using the Event Tag System

To use the Event Tag System, we have to use some AliRoot classes that are in the
STEER module. The main classes, as described in a previous section (section), are
the AliTagAnalysis, AliRunTagCuts, AliLHCTagCuts, AliDetectorTagCuts and
AliEventTagCuts. In order to use the Event Tag System in a batch session, we need to
perform an initial step described in on the client side: starting from a tag xml collection
obtained by querying the file catalogue, we define our selection criteria according to our
physics analysis and we create a new xml collection having this time the information
about the AlIESDs. The user should realize that the initial xml collection, named in the
examples as t ag. xm , held the information about the location of the tag-files inside the
file catalogue. Instead, what we create at this step is a new xml collection that will refer
to the location of the ESD files. In this xml collection we also list the events that satisfy
the imposed selection criteria for every ESD file. The following lines show how we can
generate a new xml collection (you can find these lines in the Cr eat eXM.. C macro
inside the STEER module):

Usage of AliRunTagCuts and AliEventTagCuts classes

/1 Case where the tag-files are stored in the file catal og

/1 tag.xm is the xm collection of tag-files that was produced
/'l by querying the file catal og.

TGid::Connect("alien://");

TAl i enCol | ection* coll = TAlienCollection::Qpen("tag. xm");

TG idResult* tagResult = coll->GetGidResult("",0,0);

/1l Create a new Ali TagAnal ysis obj ect
Al'i TagAnal ysi s *tagAna = new Al i TagAnal ysi s(“ESD");

/] Create a tag chain by providing the TGi dResult

/1 fromthe previous step as an argunent
t agAna- >Chai nGri dTags(tagResul t);

164/199

The ALICE Offline Bible

/1 Usage of Ali RunTagCuts & Ali Event TagCuts cl asses//
/1 Create a RunTagCut obj ect

Ali RunTagCuts *runCutsObj = new Ali RunTagCuts();

r unCut sObj - >Set Runl d(340) ;

/1 Create a LHCTagCut obj ect
Al i LHCTagCuts *l hcCutsObj = new Ali LHCTagCuts();
| hcCut sObj - >Set LHCSt at us(“test”);

/1 Create a DetectorTagCut object
Al i Det ectorTagCuts *det Cut sChj = new Al i Detector TagCuts();
det Cut sQhj - >Set Li st O Det ect ors(“ TPC’) ;

/1 Create an Event TagCut obj ect
Al i Event TagCuts *evCutsObj = new Al i Event TagCuts();
evCut sOhj ->SetMul tiplicityRange(2, 100);

I/l Create the esd xm collection:the first argunent is the
/1 collection name while the other two are the inposed criteria

t agAna- >Creat eXM_Col | ection("gl obal ", runCutsCoj, |hcCutsObj,
det Cut sthj, evCutshj);

Usage of string statements

/1l Case where the tag-files are stored in the file catal og

/1 tag.xm is the xm collection of tag-files that was produced
/1 by querying the file catal og.

TGid::Connect("alien://");

TAl i enCol | ection* coll = TAlienCollection::Open("tag. xm");

TG idResult* tagResult = coll->GetGidResult("",0,0);

/1 Create a new Ali TagAnal ysis object
Al i TagAnal ysi s *tagAna = new Al i TagAnal ysi s();

/1l Create a tag chain by providing the TGi dResult
/1 fromthe previous step as an argunent
t agAna- >Chai nGri dTags(tagResul t);

/' Usage of string statements//

const char* runCutsStr = "fAliceRunld == 340";

const char *lhcCutsStr = "fLHCTag. fLHCState == test";

const char *detCutsStr = "fDetectorTag.fTPC == 1";

const char* evCutsStr = "fEventTag. f Number Of Tracks >= 2 &&
f Event Tag. f Nunber Of Tracks <= 100";

/1 Create the esd xm collection:the first argunent is the
col l ecti on nane

/1 while the other two are the inposed criteria

t agAna- >Creat eXM_Col | ection("gl obal ", runCutsStr, |hcCutsStr,
det CutsStr, evCutsStr);

The reader should be familiar by now with the previous lines since they have already

165/199

The ALICE Offline Bible

been described in detail in section . The new thing is the very last line of code where we
call the Cr eat eXM_Col | ect i on function of the AliTagAnalysis class which takes as
arguments the name of the output xml collection (collection of ESDs) and the four run-
Ihc-detector and event-tag cuts (objects or strings). This output collection will be created
in the working directory.

Optimiser . . .-’lfélo bal.
- Bentlir) Cnein

InputData in
new JDL ;
Event list

Lf izl If doesn't get
lost

=505 G = during

Ir splitting
Job : Job i
e agents g agents %
1+E;)

(c +E1\:: (¢,+E,) C

\ . \ % P

Figure 21: A schematic view of the flow of the analysis procedure in a batch session
using the Event Tag System. Following the arrows, we have the initial xml collection
which is created by the AliTagAnalysis class listed in the jdl as an
InputDataCollection field. The optimizer takes this xml once the master job is
submitted and splits it into several sub-jobs while in parallel writing new xml collections
on every worker node. These xml collections hold the information about the events that
satisfy the imposed selection criteria, grouped by file: the analysis is performed only on
these events on every worker node.

The next step will be to create a jdl file inside of which this newly created xml collection
(name global.xml in our example) will be define as an | nput Dat aCol | ecti on field.
Then we once again submit the job and the optimizer parses the xml and splits the
master job into several sub-jobs. In parallel, a new xml collection is written on every
site, containing the information about the files that will be analyzed on every worker
node as well as the corresponding list of events that satisfy the imposed selection
criteria for every file. Thus, on every worker node, we will analyze the created chain
along with the associated event list as described in . Once finished, we will get several
output files, over which we will have to loop with a post-process in order to merge
them [, , *].

In the following paragraphs we will provide some practical information about the batch

166/199

The ALICE Offline Bible

sessions, starting from the files needed to submit a job, the jdl syntax etc.

7.7.3 Files needed

The files needed in order to submit a batch job are listed below []:

Executable: This is a file that should be stored under the $HOME/bin AliEn
directory of each user. It is used to start the ROOT/AliRoot session on every
worker node. Users can always use existing executables that can be found
under /bin. An example is given below.

Par file: Apar fil eis atarball containing the header files and the source
code of AliRoot, needed to build a certain library. It is used in the case where
we do not want to launch AliRoot but instead we want to be flexible by
launching ROOT along with the corresponding AliRoot library (e.g ROOT and
the lib*.s0). It is not compulsory although it is recommended to use a par file in
an analysis.

Macro: It is the file that each user needs to implement. Inside the macro we
setup the par file (in case we use it) and we load the needed libraries. Then we
open the input xml collection and convert it into a chain of trees. The next step
is to create an Al i Anal ysi sManager , assign a task to the manager and
define the input and output containers. Finally, we process this chain with a
selector. A snapshot of such a file has already been given in section .

XML collection: This is the collection created either by directly querying the file
catalogue (in the case where we don't use the Event Tag System) or by
querying the Event Tag System (case described in the previous paragraph).

JDL: This is a compulsory file that describes the input/output files as well as the
packages that we are going to use. A detailed description about the JDL fields
is provided in the next lines.

Example of an “executable”
#! / bi n/ bash

echo $PATH
echo $LD LI BRARY_PATH

root -b -x runBatch. C

7.7.4 JDL syntax

In this section we will try to describe in detail the different jdI fields [

64])

Executable: It is the only compulsory field of the JDL where we give the logical
file name (Ifn) of the executable that should be stored in /bin or $VO/bin or
$HOME/bin. A typical syntax can be:

Execut abl e="r oot . sh";

167/199

The ALICE Offline Bible

« Packages: The definition of the packages that will be used in the batch
session. The different packages installed can be found by typing packages in
the AliEn shell [198]. A typical syntax can be:

Packages={" APl SCONFI G : V2. 4", "VO_ALI CE@ROCT: : v5- 16- 00"} ;

» Jobtag: A comment that describes the job. A typical syntax can be:

Jobt ag={"comment: Ali En Tutorial batch exanple"};

« InputFile: In this field we define the files that will be transported to the node
where the job will run and are needed for the analysis. A typical syntax can be:

InputFile= {

"LF:/alicelcern.ch/user/p/pchrist/ Tutorial/BATCH Al i Anal ysi sTaskPt. cxx

"LF:/alicelcern.ch/user/p/pchrist/Tutorial/BATCH Al i Anal ysi sTaskPt. h",
"LF:/alicelcern.ch/user/p/pchrist/Tutorial/BATCH STEERBase. par",
"LF:/alicelcern.ch/user/p/pchrist/Tutorial/BATCH ESD. par",
"LF:/alicelcern.ch/user/p/pchrist/Tutorial/BATCH ACD. par",
"LF:/alicelcern.ch/user/p/pchrist/Tutorial/BATCH ANALYSI S. par",
"LF:/alicelcern.ch/user/p/pchrist/Tutorial/BATCH runBatch. C'};

< InputData: This field, when defined, requires that the job will be executed in a
site close to files specified here. This is supposed to be used in the case where
you don't want to use a collection of files. It should be pointed out that it is not
really practical because it implies that each user writes a large number of lines
in the jdl, thus making it difficult to handle. It should be pointed out that this
approach can be useful in the case where we use a few files. A typical syntax
can be:

Input Fi | e= {

"LF:/alicelcern.ch/user/p/pchrist/Tutorial/PDC06/001/ Al i ESDs. root"}

* InputDatalList: This is the name of the xml file created by the job agent after
the job has been split, containing the Ifn of the files of the closest storage
element. A typical syntax can be:

I nput Dat aLi st ="wn. xm ";

« InputDataListFormat: The format of the previous field. It can be either **xml-
single" where we imply that every xml entry corresponds to one file or “xml-
group” where we imply that a new set of files starts every time the base
filename appears (e.g. xml containing AlIESDs.root, Kinematics.root,
galice.root). In the context of this note, where we analyze only ESDs and not
the generator information, we should use the first option. A typical syntax can
be:

I nput Dat aLi st For mat =" xm - si ngl e";

» OutputFile: Here we define the files that will be registered in the file catalogue
once the job finishes. If we don't define the storage element, then the files will
be registered in the default one which at the moment is Castor2 at CERN. A
typical syntax can be:

Qut put Fi | e={"st dout @ALI CE: : CERN: : se",

"stderr @LI CE: : CERN: : Castor2","*.root @G\LI CE: : CERN: : se"};

168/199

The ALICE Offline Bible

« OutputDir: Here we define the directory in the file catalogue under which the
output files and archives will be stored. A typical syntax can be:
QutputDir="/alicelcern.ch/user/p/pchrist/Bal ance/ out put";

* OutputArchive: Here we define the files that we want to be put inside an
archive. It is recommended that the users use this field in order to place all their
output files in such an archive which will be the only registered file after a job
finishes. This is essential in the case of storage systems such as Castor, which
are not effective in handling small files. A typical syntax can be:

Qut put Ar chi ve={"1 ogar chi ve: stdout, stderr, *.| og@\ i ce: : CERN: : se",

"rootarchive.zip:*.root@\ ice:: CERN :se"};

« Validationcommand: Specifies the script to be used as a validation script
(used for production). A typical syntax can be:

Val i dati oncommand =
"/alicelcern.ch/user/p/pchrist/Tutorial/BATCH validation.sh";

- Email: If this field is defined, then you'll be informed that your job has finished
from an e-mail. A typical syntax can be:
Emai | =" Panos. Chri st akogl ou@ern. ch";

* TTL: One of the important fields of the JDL. It allows the user to define the
maximum time in seconds the job will run. This field is used by the optimizer for
the ordering and the assignment of the priority for each job. Lower value of TTL
provides higher probability for the job to run quickly after submission. If the
running time exceeds the one defined in this field, then the job is killed
automatically. The value of this field should not exceed 100000 sec. A typical
syntax can be:

TTL = "21000";

» Split: Used in the case we want to split our master job into several sub-jobs.
Usually the job is split per storage element (se). A typical syntax can be:
Split="se";

« SplitMaxInputFileNumber: Used to define the maximum number of files that
will be analyzed on every worker node. A typical syntax can be:
Spl i t Max! nput Fi | eNurrber =" 100" ;

In summary, the following lines give a snapshot of a typical jdl:

Example of a JDL file

this is the startup process for root
Execut abl e="r oot . sh";
Jobt ag={"conment: Ali En tutorial batch exanple - ESD'};

we split per storage el ement
Split="se";

we want each job to read 100 input files
Spl i t Max| nput Fi | eNunber ="5";

169/199

The ALICE Offline Bible

this job has to run in the ANALYSIS partition
Requi renent s=(menber (ot her. G idPartitions,"Analysis"));

val i dati on conmand

Val i dati onconmand
="/alicelcern.ch/user/p/pchrist/Tutorial/BATCH val i dation.sh";

we need ROOT and the APl service configuration package
Packages={" APl SCONFI G : V2. 4", "VO_ALI CE@ROOT: : v5- 16-00"};

Time to |live
TTL = "30000";

Automatic nerging
Merge={"Pt.ESD.root:/alice/jdl/mergerootfile.jdl:Pt.ESD. Merged.root"};

Qutput dir of the automatic merging
MergeQut put Dir="/al i ce/ cern. ch/ user/p/ pchrist/Tutorial / BATCH out put/";

#ROOT will read this collection file to know, which files to anal yze
| nput Dat aLi st="wn. xm ";

#ROOT requires the collection file in the xm-single format

| nput Dat aLi st For mat =" mer ge:/al i ce/ cern. ch/ user/p/ pchrist/ Tutorial / BATCH
/gl obal . xm ";

this is our collection file containing the files to be anal yzed

| nput Dat aCol | ecti on="LF:/alicel/cern.ch/user/p/pchrist/Tutorial/BATCH gl
obal . xm , nodownl oad";

I nput Fi |l e= {

"LF:/alicelcern.ch/user/p/pchrist/Tutorial/BATCH runBatch. C',
"LF:/alicelcern.ch/user/p/pchrist/Tutorial/BATCH STEERBase. par",
"LF:/alicelcern.ch/user/p/pchrist/Tutorial/BATCH ESD. par",
"LF:/alicelcern.ch/user/p/pchrist/Tutorial/BATCH ACD. par",
"LF:/alicelcern.ch/user/p/pchrist/ Tutorial/BATCH ANALYSI S. par",
"LF:/alicelcern.ch/user/p/pchrist/Tutorial/BATCH Al i Anal ysi sTaskPt. h",

"LF:/alicelcern.ch/user/p/pchrist/Tutorial/BATCH Al i Anal ysi sTaskPt. cxx"
s

Qut put archive

Qut put Ar chi ve=
{"l og_archive: stdout,stderr,*.l og@\l i ce:: CERN: : se", "root _ar chi ve. zi p: *.
root @\ i ce:: CERN: : se"};

Qutput directory

QutputDir="/alicel/cern.ch/user/p/pchrist/Tutorial /BATCH out put/#alien_c
ount er #";

emui |
Emai | =" Panos. Chri st akogl ou@ern. ch";

170/199

The ALICE Offline Bible

7.7.5 Job submission - Job status

After creating the jdl and registering all the files needed, we are ready to submit our
batch job []. This can be done by typing:

subnit $<fil enanme>$.jdl

at the AliEn shell prompt. If there is no mistake in our JDL, the job will be assigned a
JOBID. We can always see what are the jobs submitted by a certain user by typing

top -user $<usernane>$

Later on, we can check its status by typing:
ps -trace $<JOBI D>$

The different states are:
* INSERTING: The job is waiting to be processed by the optimizer.
e SPLITTING: The optimizer starts splitting the job if this is requested in the JDL.
» SPLIT: Several sub-jobs were created from the master job.

« WAITING: The job is waiting to be assigned to a job agent that fulfils its
requirements.

« ASSIGNED: A job agent is about to pick up this job.

« STARTED: The job agent is preparing the input sandbox and transferring the
files listed in the | nput Fi | e field.

* RUNNING: The executable has started running.

« SAVING: The executable has finished running and the job agent saves the
output to the specified storage elements.

« SAVED: The agent has successfully stored all the output files which are not
available yet in the file catalogue.

« DONE: The central optimizer has registered the output in the catalogue.

Finally, as long as a job status changes to RUNNING, a user can check its stdout and
stderr by typing:

spy $<JOBI D>$ st dout

spy $<JOBI D>$ stderr

at the AliEn prompt.

7.7.6 Merging the output

Assuming that everything worked out and that the status of the job we had submitted
has turned to DONE, we are ready to launch the post-process that will access the
different output files from every sub-job and merge them. We will concentrate in the
case where the output files contain simple histograms (case which may represent the
majority of the physics analyses). If the output files contain other analysis objects, then
we should provide our own merge functions. The following lines should be put inside the
jdl file:

171/199

The ALICE Offline Bible

JDL lines that launch the automatic merging of the output
Automatic nmerging
Merge={"Pt.ESD.root:/alice/jdl/mergerootfile.jdl:Pt.ESD Merged.root"};

Qutput dir of the automatic nerging
Mer geCQut put Di r="/al i ce/ cern. ch/ user/p/ pchri st/ Tutorial / BATCH out put/";

The previous lines allow the system to submit the ner gerootfil e.j dl that expects
the output files to be named Pt . ESD. r oot and creates the Pt . ESD. Mer ged. r oot in
the directory defined in the Mer geQut put Di r field.

All the needed files to run these examples can be found inside the PWG2 module of
AliRoot under the AnalysisMacros/Batch directory.

7.8Run-LHC-Detector and event level cut member functions

7.8.1 Run level member functions

void SetRunld(Int_t Pid);

voi d Set Magneti cFi el d(Fl oat _t Pmag);

voi d Set RunStart Ti neRange(Int_t tO0, Int_t t1);
voi d Set RunSt opTi neRange(Int_t tO, Int_t t1);
voi d Set AlirootVersion(TString v);

voi d Set Root Version(TString v);

voi d Set Geant 3Version(TString v);

void Set RunQuality(lnt_t Pn);

voi d Set BeanEner gy(Fl oat _t PE);

voi d Set BeanType(TString Ptype);

voi d Set Cal i bVersion(Int_t Pn);

voi d Set Dat aType(Int_t i);

7.8.2 LHC level member functions

void Set LHCState(TString state);
voi d Set LHCLumi nosityRange(Float_t |low, Float_t high);

7.8.3 Detector level member functions

voi d SetListOf Detectors(const TString& detectors)

7.8.4 Event level member functions

voi d SetNPartici pantsRange(lnt_t low, Int_t high);
voi d Set | npact Par anRange(Fl oat _t | ow, Float_t high);

voi d Set PrimaryVertexXRange(Float _t |ow, Float_t high);
voi d SetPrimaryVertexYRange(Fl oat _t |ow, Float_t high);
voi d Set Pri maryVertexZRange(Fl oat _t |ow, Float_t high);
voi d SetPrimaryVertexFlag(Int_t flag);

172/199

The ALICE Offline Bible

voi d Set Pri maryVertexZErrorRange(Fl oat_t |ow, Float_t high);

voi d Set Tri gger Mask(ULong64_t trmask);
voi d Set Triggerd uster(UChar_t trcluster);

voi d Set ZDCNeutronlRange(Fl oat _t |ow, Float_t high);
voi d Set ZDCPr ot onlRange(Fl oat _t | ow, Float_t high);
voi d Set ZDCEMRange(Fl oat _t |ow, Float_t high);

voi d Set ZDCNeut r on2Range(Fl oat _t | ow, Float_t high);
voi d Set ZDCPr ot on2Range(Fl oat _t | ow, Float_t high);
voi d Set TOVert exZRange(Fl oat _t |ow, Float_t high);

void SetMultiplicityRange(lnt_t low, Int_t high);

voi d Set PosMultiplicityRange(Int_t low, Int_t high);
void Set NegMul tiplicityRange(Int_t low, Int_t high);
void SetNeutrMiltiplicityRange(lnt_t low, Int_t high);
voi d Set N\VOsRange(Int_t low, Int_t high);

voi d Set NCascadesRange(Int_t low, Int_t high);

voi d Set NKi nksRange(Int_t low, Int_t high);

voi d Set NPMDTracksRange(Int_t low, Int_t high);

voi d Set NFMDTr acksRange(Int _t low, Int_t high);

voi d Set NPHOSC ust er sRange(Int _t low, Int_t high);
voi d Set NEMCALC ustersRange(Int_t low, Int_t high);
voi d Set NJet Candi dat esRange(Int_t low, Int_t high);

voi d Set TopJet EnergyM n(Fl oat _t | ow);

voi d Set TopNeutral EnergyM n(Fl oat _t | ow);

voi d Set NHar dPhot onsRange(Int _t low, Int_t high);

voi d Set NChar gedAbovelGeVRange(Int_t low, Int_t high);
voi d Set NChar gedAbove3CGeVRange(Int_t low, Int_t high);
voi d Set NChar gedAbovelOGeVRange(Int_t low, Int_t high);
voi d Set NMuonsAbovelGeVRange(Int_t low, Int_t high);

voi d Set NMuonsAbove3GeVRange(Int_t low, Int_t high);

voi d Set NMuonsAbovelOGeVRange(lnt _t low, Int_t high);
voi d Set NEl ectronsAbovelGeVRange(Int_t low, Int_t high);
voi d Set NEl ect ronsAbove3GeVRange(Int_t low, Int_t high);
voi d Set NEl ect ronsAbovelOGeVRange(Int_t low, Int_t high);
voi d Set NEl ectronRange(Int_t low, Int_t high);

voi d Set NMuonRange(Int_t low, Int_t high);

voi d Set NPi onRange(Int_t low, Int_t high);

voi d Set NKaonRange(Int_t low, Int_t high);

voi d Set NProtonRange(Int_t low, Int_t high);

voi d Set NLanbdaRange(Int_t low, Int_t high);

voi d Set NPhot onRange(Int_t low, Int_t high);

voi d Set NPi ORange(Int_t low, Int_t high);

voi d Set NNeut ronRange(Int_t low, Int_t high);

voi d Set NKaonORange(Int_t low, Int_t high);

voi d Set Tot al PRange(Fl oat _t | ow, Float_t high);

voi d Set MeanPt Range(Fl oat _t | ow, Float_t high);

voi d Set TopPt M n(Fl oat _t | ow);

voi d Set Tot al Neut ral PRange(Fl oat _t |low, Float_t high);

173/199

The ALICE Offline Bible

voi d Set MeanNeut r al Pt PRange(Fl oat _t | ow, Float_t high);
voi d Set TopNeutral PtM n(Fl oat _t | ow);

voi d Set Event Pl aneAngl eRange(Fl oat _t |ow, Float_t high);
voi d Set HBTRadi i Range(Fl oat _t | ow, Float_t high);

7.9String base object and event level tags

7.9.1 Variables for run cuts

Int_t f Al'i ceRunl d; //the run id

Fl oat _t fAliceMagneticFi el d; /lval ue of the nmagnetic field
Int _t fAli ceRunStart Ti neM n; //mnimmrun start date
Int_t f Al'i ceRunSt art Ti neMax; [/ maxi mumrun start date
Int_t f Al'i ceRunSt opTi neM n; /1 m nmum run stop date
Int_t f Al'i ceRunSt opTi meMax; /I maxi mum run stop date
TString fAlirootVersion; /laliroot version

TString fRoot Version; //root version

TString fGeant 3Version; / /I geant 3 version

Bool 't fAliceRunQuality; //validation script

Fl oat _t fAl i ceBeantnergy; // beam energy cm

TString fAliceBeanflype; [lrun type (pp, AA pA
Int_t fAliceCalibrationVersion; //calibration version
Int_t f Ali ceDat aType; /10: sinmulation -- 1. data

7.9.2 Variables for LHC cuts

To invoke one of these cuts, please make sure to use the f LHCTag. identifier.
Example: "f LHCTag. f LHCSt ate == "test".

TString fLHCSt at e; /1 LHC run conditions — coment
Fl oat _t fLHCLum nosity; //the value of the lum nosity

7.9.3 Variables for detector cuts

To invoke one of these cuts, please make sure to use the f Det ect or Tag. identifier.
Example: "f Det ect or Tag. f TPC == 1".

Bool _t f 1 TSSPD; //1TS-SPD active = 1
Bool _t f 1 TSSDD; /11 TS-SDD active = 1
Bool _t f 1 TSSSD; //1TS-SSD active = 1
Bool _t f TPC, /I TPC active = 1
Bool _t f TRD; //TRD active =1
Bool _t f TOF; //TOF active = 1
Bool _t f HVPI D; //HWID active = 1
Bool _t f PHCS; //PHCS active = 1
Bool _t f PMD; //PVMD active = 1
Bool _t f MUON; //MJON active = 1
Bool _t f F\VD; //FND active = 1
Bool _t f TZERG, /1 TZERO active = 1
Bool _t f VZERG, /I VZERO active = 1

174/199

The ALICE Offline Bible

Bool _t f ZDC; /1ZDC active =1
Bool _t f EMCAL; // EMCAL active = 1

7.9.4 Variables for event cuts

To invoke one of these cuts, please make sure to use the f Event Tag. identifier.
Example: "f Event Tag. f NParti ci pants < 100".

Int_t fNParticipantsMn, fNParticipantsMax;
Fl oat _t flnpactParanM n, fl npact Paramvax;

Fl oat _t fVxMn, fVxMax;

Float _t fWwMn, fWNMax;

Fl oat _t fVzM n, fVzMax;

Int_t fPrimaryVertexFl ag;

Float _t fPrimaryVertexZErrorMn, fPrimaryVertexZError Max;

ULong64_t f Tri gger Mask;
UChar _t fTriggerd uster;

Fl oat _t fZDCNeutronlEnergyM n, fZDCNeutronlEnergyMax;
Fl oat _t fZDCProt onlEnergyM n, fZDCProtonlEner gyMax;

Fl oat _t fZDCNeut ron2Ener gyM n, fZDCNeutron2Ener gyMax;
Fl oat _t fZDCProt on2Ener gyM n, f ZDCProt on2Ener gyMax;

Fl oat _t fZDCEMEner gyM n, fZDCEMEner gyMax;

Fl oat _t fTOVertexZM n, fTOVertexZMax;

Int_t fMultMn, fMiltMx;

Int_t fPosMultMn, fPosMiltMax;
Int_t fNegMultMn, fNegMiltMax;
Int_t fNeutrMultM n, fNeutrMiltMx;
Int_t fNVOsM n, fNVOsMax;

Int_t fNCascadesM n, fNCascadesMax;
Int_t fNKinksMn, fNKinksMax;

Int_t fNPMDTracksM n, fNPMDTracksMax;

Int_t fNFMDTracksM n, fNFMDTracksMax;

Int_t fNPHOSC ustersM n, fNPHOSCO ustershax;
Int_t fNEMCALC ustersM n, fNEMCALC ustershax;
Int_t fNJetCandi datesM n, fNJet Candi dat esMax;

Fl oat _t fTopJet EnergyM n;
Fl oat _t fTopNeutral EnergyM n;

Int_t fNHardPhot onCandi dat esM n, f NHar dPhot onCandi dat esMax;
Int_t fNChargedAbovelGeVM n, fNChargedAbovelGeVMax;

Int_t fNChargedAbove3GeVM n, fNChargedAbove3GeVMax;

Int_t fNChargedAbovel0GeVM n, f NChar gedAbovelOGeVMax;

Int_t fNMuonsAbovelGeVM n, fNMuonsAbovelGeVMax;

Int_t fNMuonsAbove3GeVM n, fNMuonsAbove3GeVMax;

Int_t fNMuonsAbovelOGeVM n, fNMuonsAbovelOGeVMax;

175/199

The ALICE Offline Bible

Int_t fNEl ectronsAbovelGeVM n, f NEl ectronsAbovelGeVMax;
Int_t fNEl ectronsAbove3GeVM n, f NEl ectronsAbove3GeVMax;
Int_t fNEl ectronsAbovel0GeVM n, f NEl ect r onsAbovel0GeVMax;
Int_t fNEl ectronsMn, fNElectronsMax;

Int_t fNMuonsM n, fNMuonsMax;

Int_t fNPionsMn, fNPionsMax;

Int_t fNKaonsM n, fNKaonsMax;

Int_t fNProtonsM n, fNProtonsMax;

Int_t fNLanbdasM n, fNLanbdasMax;

Int_t fNPhotonsM n, fNPhotonsMax;

Int_t fNPiOsMn, fNPiOsMax;

Int_t fNNeutronsM n, fNNeutronsMax;

Int_t fNKaonOsM n, fNKaonOsMax;

Fl oat _t fTotal PM n, fTotal PMax;

Fl oat _t fMeanPtM n, fMeanPt Max;

Fl oat _t fTopPtM n;

Fl oat _t fTotal Neutral PM n, fTotal Neutral PMax;

Float t fMeanNeutral Pt M n, fMeanNeutral Pt Max;

Fl oat _t fTopNeutral Pt M n;

Fl oat _t fEvent Pl aneAngl eM n, fEvent Pl aneAngl eMax;

Fl oat _t fHBTRadii M n, fHBTRadii Max;

7.10Summary

To summarize, we tried to describe the overall distributed analysis framework by also
providing some practical examples. The intention of this note, among other things, was
to inform the users about the whole procedure starting from the validation of the code
which is usually done locally up to the submission of GRID jobs.

We started off by showing how one can interact with the file catalogue and extract a
collection of files. Then we presented how one can use the Event Tag System in order
to analyze a few ESD/AOD files stored locally, a step which is necessary for the
validation of the user's code (code sanity and result testing). The next step was the
interactive analysis using GRID stored ESDs/AODs. This was also described in detail in
Section . Finally, in Section , we presented in detail the whole machinery of the
distributed analysis and we also provided some practical examples to create a new xml
collection using the Event Tag System. We also presented in detail the files needed in
order to submit a GRID job and on this basis we tried to explain the relevant JDL fields
and their syntax.

We should point out once again, that this note concentrated on the usage of the whole
metadata machinery of the experiment: that is both the file/run level metadata [] as well
as the Event Tag System []. The latter is used because, apart from the fact that it
provides us with a fast event filtering mechanism, it also takes care of the creation of
the analyzed input sample in the proper format (TChain) in a fully transparent way.
Thus, it is easy to plug it in as a first step in the new analysis framework [, 199], which is
being developed and validated as this note was written.

176/199

The ALICE Offline Bible

8 Appendix

8.1Kalman filter

Kalman filtering is quite a general and powerful method for statistical estimations and
predictions. The conditions for its applicability are the following. A certain “system” is
determined at any moment in time t, by a state vector X. The state vector varies with
time according to an evolution equation

X = f, (Xk—1)+ &
It is supposed that fk a known deterministic function and €, is a random vector of
intrinsic “process noise” which has a zero mean value (<€k>=0) and a known
covariance matrix (COV(Ek): Q.). Generally, only some function h, = h(Xk) of the

state vector can be observed, and the result of the observation M is corrupted by a
“measurement noise” Oy :

m = h, (Xk)+ O
The measurement noise is supposed to be unbiased ({ 5k/ =0) and have a definite
covariance matrix COV(5) . In many cases, a matrix H, can represent the
measurement function N :

rnk = Hkxk + 5k
If, at a certain time t,_1, we are given some estimates of the state vector)~<k_1 and of its

covariance matrix C,_; = COV(%’_l - Xk_l), we can extrapolate these estimates to the

next time slot T, by means of formulas (this is called “prediction”):

X7 =1 (%)

&= FGF +Q, F =

Xy

The value of the predicted)(2 increment can be also calculated:

(Xz)t_l = (rkk_l)T (R:_l)rkk_l’ rkk_l = rnk - Hkﬁ}lgl’ RL(_:L :Vk + Hk@%—lH;—

The number of degrees of freedom is equal to the dimension of the vector M.

If at the moment 1, together with the results of prediction, we also have the results of
the state vector measurement, this additional information can be combined with the
prediction results (this is called “filtering”). As a consequence, the estimation of the
state vector improves with respect to the previous step:

177/199

The ALICE Offline Bible

X, =t:1 +K, (mk - Hk)?)l(?_l)
él/? @kg_l_ Kka@%_l

_ _ —1
where Ky is the Kalman gain matrix K, = (%5 H] (Vk + Hké’,? 1HI) . Finally, the

next formula gives us the value of the filtered)(2 increment:
2 _ " -1 _ _ T
Xk = (rk) (Rk) Mo =M= Hk% RK _Vk - HkGI/?Hk
It can be shown that the predicted)(2 value is equal to the filtered one:
-1
) =x

The “prediction” and “filtering” steps are repeated as many times as we have
measurements of the state vector.

8.2Bayesian approach for combined particle identification

Particle identification over a large momentum range and for many particle species is
often one of the main design requirements of high energy physics experiments. The
ALICE detectors are able to identify particles with momenta from 0.1 GeV/c up to
10 GeV/c. This can be achieved by combining several detecting systems that are
efficient in some narrower and complementary momentum sub-ranges. The situation is
complicated by the amount of data to be processed (about 107 events with about 10*
tracks in each). Thus, the particle identification procedure should satisfy the following
requirements:

e It should be as much as possible automatic.

* It should be able to combine PID signals of different nature (e.g. dE/dx and
time-of-flight measurements).

* When several detectors contribute to the PID, the procedure must profit from
this situation by providing an improved PID.

* When only some detectors identify a particle, the signals from the other
detectors must not affect the combined PID.

» It should take into account the fact that, due to different event and track
selection, the PID depends on the kind of analysis.

In this report we will demonstrate that combining PID signals in a Bayesian way
satisfies all these requirements.

8.2.1 Bayesian PID with a single detector

Let I (S| i) be a conditional probability density function to observe in some detector a
PID signal S if a particle of i -type (1 = & i, 7K, p,K) is detected. The probability to
be a particle of i-type if the signal S is observed, W(i |S), depends not only on
r(s|i), but also on how often this type of particles is registered in the considered

178/199

The ALICE Offline Bible

experiment (“a priory” probability C. to find this kind of particles in the detector). The
corresponding relation is given by the Bayes' formula:

r(sli)c,
Y . (S1K)C, v

w(i|s)=

Under some reasonable conditions, C; and I (S| i) are not correlated so that one can
rely on the following approximation:

» The functions I (S| i) reflect only properties of the detector (“detector response

functions”) and do not depend on other external conditions like event and track
selections.

+ On contrary, the quantities C, (“relative concentrations” of particles of i -type)
do not depend on the detector properties, but do reflect the external conditions,
selections etc}.

The PID procedure is done in the following way. First, the detector response function is
obtained. Second, a value r(s|i) is assigned to each track. Third, the relative
concentrations C; of particle species are estimated for a subset of events and tracks
selected in a specific physics analysis. Finally, an array of probabilities W(i |S) is
calculated (see Equation 1 for each track within the selected subset.

The probabilities W(i |S) are often called PID weights. The conditional probability

density function V(S | i) (detector response function) can be always parameterized with
sufficient precision using available experimental data.

In the simplest approach, the a-priori probabilites C (relative concentrations of
particles of i -type) to observe a particle of i-type can be assumed to be equal.

However, in many cases one can do better. Thus, for example in ALICE, when doing
PID in the TPC for the tracks that are registered both in the TPC and in the Time-Of-
Flight detector (TOF), these probabilities can be estimated using the measured time-of-
flight. One simply fills a histogram of the following quantity:

ct?

m= p 2 -1

P
By
where P and | are the reconstructed track momentum and length and t is the

measured time-of-flight. Such a histogram peaks near the values m that correspond
to the masses of particles.

Forcing some of the C tobe exactly zeros excludes the corresponding particle type
from the PID analysis and such particles will be redistributed over other particle classes
(see Equation 1). This can be useful for the kinds of analysis when, for the patrticles of a
certain type, one is not concerned by the contamination but, at the same time, the
efficiency of PID is of particular importance.

179/199

The ALICE Offline Bible

8.2.2 PID combined over several detectors

This method can be easily applied for combining PID measurements from several
detectors. Considering the whole system of N contributing detectors as a single

“super-detector” one can write the combined PID weights W(i |§) in the form similar
to that given by Equation 1.

R(s|i)C
D e nox REIK)C,

where S=8S,S,,K , S, is a vector of PID signals registered in the first, second and
other contributing detectors, C are the a priory probabilities to be a particle of the i -

wW(i|s)=

type (the same as in Equation 1) and R(§ ||) is the combined response function of the
whole system of detectors.

If the single detector PID measurements S; are uncorrelated (which is approximately
true in the case of the ALICE experiment), the combined response function is product of

single response functions I (SJ- |i) (the ones in Equation 1):

R(s|i)=|jr(s] i) @

One obtains the following expression for the PID weights combined over the whole
system of detectors:

c[]rs 1)
> Ckljr(s]|k)

k=eu, mK

W(ils. s.K, s)= (3)

In the program code, the combined response functions R(§ |i) do not necessarily
have to be treated as analytical. They can be “procedures” (C++ functions, for
example). Also, some additional effects like probabilities to obtain a mis-measurement
(mis-matching) in one or several contributing detectors can be accounted for.

The formula Equation 3 has the following useful features:

» If for a certain particle momentum one (or several) of the detectors is not able
to identify the particle type (i.e. the I (S| i) are equal for alll i=e 1K), the
contribution of such a detector cancels out from the formula.

* When several detectors are capable of separating the particle types, their
contributions are accumulated with proper weights, thus providing an improved
combined particle identification.

« Since the single detector response functions $r(s|i)$ can be obtained in
advance at the calibration step and the combined response can be

approximated by Equation 2, a part of PID (calculation of the R(§ | i)) can be
done track-by-track “once and forever” by the reconstruction software and the

180/199

The ALICE Offline Bible

results can be stored in the Event Summary Data. The final PID decision, being
dependent via the a priory probabilities C. on the event and track selections, is
then postponed until the physics analysis of the data.

8.2.3 Stability with respect to variations of the a priory
probabilities

Since the results of this PID procedure explicitly depend on the choice of the a priori
probabilities C (and, in fact, this kind of dependence is unavoidable in any case), the
question of stability of the results with respect to the almost arbitrary choice of C
becomes important.

Fortunately, there is always some momentum region where the single detector
response functions for different particle types of at least one of the detectors do not
significantly overlap, and so the stability is guaranteed. The more detectors enter the
combined PID procedure, the wider this momentum region becomes and the results are
more stable.

Detailed simulations using the AliRoot framework show that results of the PID combined
over all the ALICE central detectors are, within a few per cent, stable with respect to
variations of C; up-to at least 3 Gev/c.

8.2.4 Features of the Bayesian PID

Particle Identification in ALICE experiment at LHC can be done in a Bayesian way. The
procedure consists of three parts:

« First, the single detector PID response functions r(S | i) are obtained. The
calibration software does this.

» Second, for each reconstructed track the combined PID response R(§ ||) is

calculated and effects of possible mis-measurements of the PID signals can be
accounted for. The results are written to the Event Summary Data and, later,
are used in all kinds of physics analysis of the data. This is a part of the
reconstruction software.

* And finally, for each kind of physics analysis, after the corresponding event and
track selection is done, the a priori probabilities C tobea particle of a certain
I -type within the selected subset are estimated and the PID weights W(i |§)

are calculated by means of formula Equation 3. This part of the PID procedure
belongs to the analysis software.

The advantages of the particle identification procedure described here are:

« The fact that, due to different event and rack selection, the PID depends on a
particular kind of performed physics analysis is naturally taken into account.

» Capability to combine, in a common way, signals from detectors having quite
different nature and shape of the PID response functions (silicon, gas, time-of-
flight, transition radiation and Cerenkov detectors).

181/199

The ALICE Offline Bible

* No interactive multidimensional graphical cuts are involved. The procedure is
fully automatic.

8.3Vertex estimation using tracks

Each track, reconstructed in the TPC and in the ITS, is approximated with a straight line
at the position of the closest approach to the nominal primary vertex position (the
nominal vertex position is supposed to be known with a precision of 100-200 pum).

Then, all possible track pairs (i, j) are considered and for each pair, the centre

C(i, J)E (Xij » Yij Z,-) of the segment of minimum approach between the two lines is

found. The coordinates of the primary vertex are determined as:

1 1
DX VI T W AT

pairs i.j pairs i,]

1

2%

pairs i,

X N
where Npairs is the number of track pairs. This gives an improved estimate of the vertex
position.

Finally, the position I, = (XV, Yo ZV) of the vertex is reconstructed minimizing the)(2
function (see [*]):

X (rV)= iZ(rv_ I)T Vi_l(rv _ri)

where I; is the global position of the track | (i.e. the position assigned at the step
above) and V, is the covariance matrix of the vector T .

In order not to spoil the vertex resolution by including in the fit tracks that do not
originate from the primary vertex (e.g. strange particle decay tracks), the tracks giving a
contribution larger than some value)(riax to the global)(2 are removed one-by-one
from the sample, until no such tracks are left. The parameter Xiax was tuned, as a
function of the event multiplicity, so as to obtain the best vertex resolution.

8.4Alignment framework

8.4.1 Basic objects and alignment constants

The purpose of the ALICE alignment framework is to offer all the functionality related to
storing alignment information, retrieving it from the Offline Conditions Data Base
(OCDB) and consistently applying it to the ALICE geometry in order to improve the
knowledge of the real geometry by means of the additional information obtained by
survey and alignment procedures, without needing to change the hard-coded
implementation of the detector's geometry. The ALICE alignment framework is based
on the AliAlignODbj base class and its derived classes; each instance of this class is an
alignment object storing the so called alignment constants for a single alignable volume,
that is the information to uniquely identify the physical volume (specific instance of the
volume in the geometry tree) to be displaced and to unambiguously describe the delta-

182/199

The ALICE Offline Bible

transformation to be applied to that volume. In the ALICE alignment framework an
alignment object holds the following information:

e aunique volume identifier
e aunique global index
e adelta-transformation

In the following we describe the meaning of these variables, how they are stored and
set and the functionality related to them.

8.4.1.1The unique volume identifier

The unique volume identifier is the character string which allows the user to access a
specific physical volume inside the geometry tree. For the ALICE geometry (which is a
ROOT geometry) this is the volume path that is the string containing the names of all
physical volumes in the current branch in the directory tree fashion. For example
“/A_1/B_i/.../M_j/Vol_K” identifies the physical volume “kth copy of the volume Vol” by
listing its container volumes; going from right to left in the path corresponds to going
from the innermost to the outermost containers and from the lowest to the upper level in
the geometry tree, starting from the mother volume “M_j” of the current volume “Vol_k”
up to the physical top volume “A_17, the root of the geometry tree.

The unique volume identifier stored by the alignment object is not the volume path but a
symbolic volume name, a string dynamically associated to the corresponding volume
path by a hash table built at the finalization stage of the geometry (the physical tree
needs to be already closed) and stored as part of it. The choice of the symbolic volume
names is constrained only by the following two rules:

1. Each name has to contain a leading sub-string indicating its pertaining sub-
detector; in this way the uniqueness of the name inside the sub-detector scope
guarantees also its uniqueness in the global scope of the whole geometry.

2. Each name has to contain the intermediate alignable levels, separated by a
slash (“/”), in case some other physical volume on the same geometry branch is
in turn alignable.

There are two considerable advantages deriving from the choice to introduce the
symbolic volume names as unique volume identifiers stored in the alignment object in
place of the volume path:

1. The unique volume identifier has no direct dependency on the geometry; in fact
changes in the volume paths reflect in changes in the hash table associating
the symbolic names to them, which is built and stored together with the
geometry. As a consequence the validity of the alignment objects is not
affected by changes in the geometry and hence is in principle unlimited in time.

2. The unique volume identifier can be freely chosen, according to the two simple
rules mentioned above, thus allowing to assign meaningful names to the
alignable volumes, as opposed to the volume paths which inevitably are long
strings of often obscure names.

183/199

The ALICE Offline Bible

The geometry then provides the user with some methods to query the hash table linking
the symbolic volume names to the corresponding volume paths; in particular the user
can

e get the number of entries in the table;

» retrieve a specific entry (symbolic volume name, volume path) either by index
or by symbolic name.

8.4.1.2The unique global index

Among the alignment constants we store a numerical index uniquely identifying the
volume to which those constants refer; being a “short”, this numerical index has 16 bits
available which are filled from the index of the “layer” or sub-detector to which the
volume belongs (5 bits) and from the “local index”, i.e. the index of the volume itself
inside the sub-detector (the remaining 11 bits). Limiting the range of sub-detectors to
2°=32 and of alignable volumes inside each sub-detector to 2''=2048, this suites our
needs.

The aim of indexing the alignable volumes is to have a fast iterative access during
alignment procedures. The framework allows to easily browse through the look-up table
mapping indexes to symbolic volume names by means of methods which return the
symbolic volume name for the present object given either its global index or both, its
layer and local indexes. For these methods to work, the only condition is that at least
one instance of an alignment object has been created, so that the static method building
the look-up table has been called.

8.4.1.3The delta-transformation

The delta-transformation is the transformation that defines the displacement to be
applied to the given physical volume. During the alignment process we want to correct
the hard-coded, ideal position of some volume, initially fixed according to the engineers'
drawings, by including the survey and alignment information related to those volumes;
we say that we want to align the ideal geometry. With this aim, we need here to
describe how the delta-transformations are defined and thus how they have to be
produced and applied to the ideal geometry in order to correct the global and local ideal
transformations into global and local aligned transformations.

For the representation of the delta-transformation there are several possible
conventions and choices, in particular:

1. to use the local-to-global or the global-to-local convention and “active-” or
“passive-transformations” convention;

2. to use the local or global delta-transformation to be stored in the alignment
object and to be passed when setting the object itself;

3. the convention used for the Euler angles representing the delta-transformation;

4. the use of a matrix or of a minimal set of parameters (three orthogonal shifts
plus three Euler angles) to be stored in the alignment object and to be passed
when setting the object itself.

184/199

The ALICE Offline Bible

The choices adopted by the framework are explained in the remainder of this section.
Use of the global and local transformations

Based on the ROOT geometry package, the framework keeps the “local-to-global”
convention; this means that the global transformation for a given volume is the matrix
G that, as in TGeo, transforms the local vector | (giving the position in the local
reference system, i.e. the reference system associated to that volume) into the global
vector 9, giving the position in the global (or master) reference system (“MARS”),
according to:

g=GU
Similarly, the local transformation matrix is the matrix L that transforms a local vector
| into the corresponding vector in the mother volume RS, M, according to:
m=L{[
If furthermore M is the global transformation for the mother volume, then we can write:
g=GUO=MOn=MILO (10)
Recursively repeating this argument to all the parent volumes, that is to all the volumes
in the branch of the geometry tree which contains the given volume, we can write:
g=GUO=M, KM, L O (11)

which shows that the global matrix is given by the product of the matrices of the parent
volumes on the geometry branch, from the uppermost to the lowest level.

Let's now denote by G and $ L the ideal global and local transformations of a specific
physical volume (those relative to the reference geometry) and let's put the superscript
" to the corresponding matrices in the aligned geometry, so that G* and L* are the
aligned global and aligned local transformations which relate the position of a point in
the local RS to its position in the global RS and in the mother's RS respectively, after

the volume has been aligned, according to:
g=G*0

12

m=L%0 (12)

Equations 12 are the equivalent of Equations 10 and 11 after the volume has been
displaced.

There are two possible choices for expressing the delta-transformation:

» Use of the global delta-transformation A°, that is the transformation to be
applied to the ideal global transformation G in order to get the aligned global
transformation:

Gi=A[G=A°IM [L (13)

« Use of the local delta-transformation A', that is the transformation to be applied
to the ideal local transformation L to get the aligned local transformation:

L =L (14)

Equations 13 and 14 allow rewriting:

185/199

The ALICE Offline Bible

G*=M 1° (15)
as.
A°MIL =M L (16)
or equivalently:
A =G} G
(17)
A =GN G

to relate global and local alignment.

The alignment object stores as delta-transformation the global delta-transformation;
nevertheless both global and local delta-transformations can be used to construct the
alignment object or to set it. The reasons for this flexibility in the user interface is that
the local RS is sometimes the most natural one for expressing the misalignment, as e.g.
in the case of a volume rotated around its centre; however the use of the local delta-
transformation is sometimes error-prone; in fact the user has to be aware that he is
referring to the same local RS which is defined in the hard-coded geometry when
positioning the given volume, while the local RS used by simulation or reconstruction
code can in general be different. In case the alignment object is constructed or its delta-
transformation is set by means of the local delta-transformation, the framework will then
use Equation 17 to perform the conversion into global alignment constants.

As for the choice of storing a symbolic volume name instead of the volume path as
volume identifier, we would like to also make the delta-transformation stored in the
alignment objects independent from the geometry, keeping thus their validity
unconstrained. This is possible if we store in the geometry itself a matrix for the ideal
global transformation related to that volume (this possibility is offered by the class
storing the link between symbolic volume names and volume paths, see Section 8.4.2.

Matrix or parameters for the delta-transformation
The global delta-transformation can be saved both
* as aTGeoMatrix and

* as a set of six parameters, out of which three define the translation, by means
of the shifts in the three orthogonal directions, and three define the rotation by
means of three Euler angles.

These two cases correspond to choosing one of the following two AliAlignObj-derived
classes:

« AliAlignObjMatrix: stores a TGeoHMatrix

« AliAlignObjAngles: stores six double precision floating point numbers;

While storing the alignment constants in a different form, they appear with the same
user interface, which allows setting the delta-transformation both via the matrix and via
the six parameters that identify it.

Choice for the Euler angles

A general rotation in three-dimensional Euclidean space can be decomposed into and

186/199

The ALICE Offline Bible

represented by three successive rotations about the three orthogonal axes. The three
angles characterizing the three rotations are called Euler angles; however there are
several conventions for the Euler angles, depending on the axes about which the
rotations are carried out, right/left-handed systems, (counter-)clockwise direction of
rotation, order of the three rotations.

The convention chosen in the ALICE alignment framework for the Euler angles is the
xyz convention (see [*°]), also known as pitch-roll-yaw or Tait-Bryan angles, or Cardano
angles convention. Following this convention, the general rotation is represented as a
composition of a rotation around the z-axis (yaw) with a rotation around the y-axis
(pitch) with a rotation around the x-axis (roll). There is an additional choice to fully
specify the convention used, since the angles have opposite sign whether we consider
them bringing the original RS in coincidence with the aligned RS (active-transformation
convention) or the other way round (passive-transformation convention). In order to
maintain our representation fully consistent with the TGeoRotation methods we choose
the active-transformation convention, that is the opposite convention as the one chosen
by the already referenced description of the pitch-roll-yaw angles [199].

To summarise, the three angles — ¢, 2, @ — used by the framework to represent the
rotation part of the delta-transformation, unambiguously represent a rotation A as the
composition of the following three rotations:

1. arotation D by an angle @ (yaw) around the z-axis

[cosp -sng 00O
= Oy O
D Dsm(,/) cos@ OD
0o 0 10

2. arotation C by an angle & (pitch) around the y-axis

Ocosd 0 snd0O
-0]
C 0 0 1 0 0
[(Fsnd 0 cos?

3. arotation B by an angle Y (roll) around the x-axis
m O 0 O

B= Eb cosy -s mﬂ%

[0 sny cosy O

which leads to:

0 CoS? Cos@ -cosd sng sngd [
A:BEC[ID:Esinwsinﬁcoswcoswsinqo —sny sSnd Sng+ cosy cose —cosﬁsinwg

[(Fcosy snd cos@+9ny sSng cosy Sind Sng+siny cosg cosd cosy [

8.4.2 Use of ROOT geometry functionality

The ALICE geometry is implemented via the ROOT geometrical modeller (often referred
to as TGeo), a framework for building, browsing, navigating and visualising a detector's

187/199

The ALICE Offline Bible

geometry, which is independent from the Monte Carlo transport (see[*’] and the
dedicated chapter in [**]). This choice allows the ALICE alignment framework to take
advantage of using ROOT features such as its I/O, histogramming, browsing, GUI,
However, the main advantage of this choice is that the ALICE alignment framework can
provide its specific functionality as a rather thin layer on top of already existing features
which allow to consistently and efficiently manage the complexity related to modifying a
tree of some million of physical nodes. The ALICE alignment framework takes in
particular advantage of the possibility:

» 1o save the geometry to a file and upload it from a file;

to check the geometry for overlaps and extrusions exceeding a given threshold;

» 1o query the geometry for the global and local matrix of a given physical
volume;

« to make a physical node out of a specific physical volume and change the local
and global transformation associated to it, while keeping track of the original
transformations;

» 1o store a hash table of links between symbolic volume names and volume
paths which can be queried in an efficient way.

Concerning this last issue, the class representing the objects linking the symbolic
volume names and the volume paths provides in addition the possibility to store a
transformation. This feature turns out to be very useful if it is used to store the matrix
relating the RS stored in the geometry (global transformation matrix for that volume)
with the RS used in simulation and reconstruction (the two things in general differ).

8.4.3 Application of the alignment objects to the geometry

The base class provides a method to apply the single alignment object to the geometry
present in memory, loaded from file or constructed; the method accesses the geometry
to change the position of the volume referred by the unique volume identifier according
to Equation (13). However this method alone cannot guarantee that the single object is
applied correctly; the most common case is indeed the application of a set of alignment
objects. In this case the framework has to check that the application of each object in
the set does not invalidate the application of the others; when applying a set of
alignment objects during a simulation or reconstruction run the framework transparently
performs the following two checks:

1. In case of alignment objects referring to physical volumes on the same branch,
they have to be applied starting from the one which refers to a volume at the
uppermost level in the physical tree (container volume) down to the one at the
lowest level (contained volume). On the contrary, if the contained volume is
displaced first the subsequent displacement of the container volume would
change its temporarily correct position;

2. Inno case, two alignment objects should be applied to the same physical
volume separately.

The reason for the first limitation is, in short, that the position of the contained volumes

188/199

The ALICE Offline Bible

depend on the position of the container volumes. The reason for the second limitation is
that the delta-transformations are relative to the ideal global position of the given
volume (see Equation (13)), which then need not to have been previously modified by
the previous application of an alignment object referring to the same volume. The tools
used by the framework for checking that the two previous conditions are fulfilled are
respectively:

1. Sorting the alignment objects based on a method which compares the depth of
the physical volume to which the given alignment object refers.

2. Combining more alignment objects referring to the same volume before
applying them to the geometry.

During a simulation or reconstruction run the user can consistently apply the objects to
the geometry, having the two checks described above transparently performed.

An additional check is performed during a simulation or reconstruction run to verify that
the application of the alignment objects did not introduce big overlaps or extrusions
which would invalidate the geometry (hiding some sensitive parts or changing the
material budget during tracking). This check is done by means of the overlap checker
provided by the ROOT geometry package; a default threshold below which overlaps
and extrusions are accepted is fixed; the TGeo overlap checker favours speed (checks
the whole ALICE geometry in few seconds) at the expense of completeness, thus same
rare overlap topologies can eventually escape the check.

8.4.4 Access to the Conditions Data Base

An important task of the ALICE alignment framework is to intermediate between the
simulation and reconstruction jobs and the objects residing on the Offline Conditions
Data Base (OCDB), both for defining a default behaviour and for managing specific use
cases. The OCDB is filled with conditions (calibration and alignment) objects; the
alignment objects in the OCDB are presently created by macros to reproduce two
possible misalignment scenarios: the initial misalignment, according to expected
deviations from the ideal geometry just after the sub-detectors are positioned and the
residual misalignment, trying to reproduce the deviations which can not be resolved by
the alignment procedures. The next step is to fill the OCDB with the alignment objects
produced from the survey procedures, as soon as survey data are available to the
offline. Finally these objects and those produced by alignment procedures will fill the
OCDB to be used by the reconstruction of the real data in its different passes.

The OCDB stores the conditions making use of the database capabilities of a file
system three-level directory structure; the run and the version are stored in the file
name. If not otherwise specified, the OCDB returns the last version of the required
object and in case of an object being uploaded it is automatically saved with increased
version number.

The ALICE alignment framework defines a specific default storage from which to load
the alignment objects for all the sub-detectors; the user can set a different storage,
either residing locally or on the Grid if he has the permissions to access it. The definition
of a non-default storage for the OCDB, as well as its deactivation can also be given for

189/199

The ALICE Offline Bible

specific sub-detectors only, The user can also just switch off the loading of alignment
objects from a OCDB storage or as a side-effect of passing to the simulation or
reconstruction run an array of alignment objects available in memory.

8.4.5 Summary

The ALICE alignment framework, based on the ROOT geometry package (see [199,
199]), aims at allowing a consistent and flexible management of the alignment
information, while leaving the related complexity as much as possible hidden to the
user. The framework allows:

« Saving and retrieving the alignment constants relative to a specific alignable
volume (automatic retrieval from a Conditions Data Base is handled);

* Apply the alignment objects to the current (ideal) geometry;

« Get from the current geometry the alignment object for a specified alignable
volume;

« Transform positions in the ideal global RS into positions in the aligned global
RS;

» Set the objects by means of both global and local delta-transformations.

These functionalities are built on the AliAlignObj base class and its two derived
classes, which store the delta-transformation by means of the transformation matrix
(AliAlignObjMatrix) or by means of the six transformation parameters
(AliAlignObjAngles). The user interface is the same in both cases; it fixes the
representation of the delta-transformation while leaving several choices to the user
which have been explained in this note together with their implementation.

The ALICE alignment framework fixes the following conventions:
« The transformations are interpreted according to the local-to-global convention;
» The delta-transformation stored is the global delta-transformation;

e The three parameters to specify the rotation are the roll-pitch-yaw Euler angles,
with the active-transformations convention.

The framework fixes also the following default behaviours in simulation and
reconstruction runs:

* Objects are loaded from a default Conditions Data Base storage, on a sub-
detector basis;

< The set of loaded objects is sorted for assuring the consistency of its
application to the geometry;

e Theideal and aligned geometries are saved.
Several choices related to the delta-transformation are left to the user, who:

» Can choose to set the alignment object either by passing a TGeoMatrix or by
giving the six parameters which uniquely identify the global delta-
transformation;

190/199

The ALICE Offline Bible

« Can choose if he wants the object to store either the TGeoMatrix, using an
AliAlignObjMatrix or the six parameters, using an AliAlignObjAngles;

» Can choose if the transformation he is passing is the global delta-
transformation or the local delta-transformation; in this latter case the
framework converts it to the global one to set the internal data members.

191/199

The ALICE Offline Bible

9 Glossary

ADC Analogue to Digital Conversion/Converter

AFS Andrew File System
http://en.wikipedia.org/wiki/Andrew_file_system

ALICE A Large lon Collider Experiment
http://aliceinfo.cern.ch

AOD Analysis Object Data

API Application Program Interface

ARDA Architectural Roadmap towards Distributed Analysis

http://lcg.web.cern.ch/LCG/activities/arda/arda.html

AliRoot ALICE offline framework
http://aliceinfo.cern.ch/offline

CA Certification Authority

CASTOR CERN Advanced STORage
http://castor.web.cern.ch/castor

CDC Computing Data Challenge
CDF Collider Detector at Fermilab
CE Computing Element

http://aliceinfo.cern.ch/static/AliEn/AliEn_Instalation/ch06s07.html

CERNEuropean Organization for Nuclear Research
http://www.cern.ch

CINT C/C++ INTerpreter that is embedded in ROOT
http://root.cern.ch/root/Cint.html

CRT Cosmic Ray Trigger, the official name is ACORDE
url??

Cvs Concurrent Versioning System

http://www.nongnu.org/cvs

DAQ Data AcQuisition system
http://cern.ch/alice-daq

DATE Data Acquisition and Test Environment
http://cern.ch/alice-daq

DCA Distance of Closest Approach

DCS Detector Control System
http://alicedcs.web.cern.ch/alicedcs

192/199

The ALICE Offline Bible

DPMJET Dual Parton Model monte carlo event generator

http://sroesler.web.cern.ch/sroesler/dpmijet3.html

EGEEEnabling Grid for E-sciencE project

http://public.eu-egee.org

EMCal Electromagnetic Calorimeter

ESD Event Summary Data

FLUKA A fully integrated particle physics Monte Carlo simulation package
http://www.fluka.org

FMD Forward Multiplicity Detector

http:/fmd.nbi.dk

FSI Final State Interactions

GAG Grid Application Group
http://project-lcg-gag.web.cern.ch/project-lcg-gag

GUI Graphical User Interface

GeVSim fast Monte Carlo event generator, base on MEVSIM

Geant 4 A toolkit for simulation of the passage of particles through matter
http://geant4.web.cern.ch/geant4

HBT Hanbury Brown and Twiss

HEP High Energy Physics

HEPCAL HEP Common Application Area

HERWIG Monte Carlo package for simulating Hadron Emission Reactions With

Interfering Gluons
http://cernlib.web.cern.ch/cernlib/mc/herwig.html

HIJING Heavy lon Jet Interaction Generator

HLT

High Level Trigger
http://wiki.kip.uni-heidelberg.de/ti/HLT/index.php/Main_Page

HMPID High Momentum Particle Identification

http://alice-hmpid.web.cern.ch/alice-hmpid

ICARUS Imaging Cosmic And Rare Underground Signals

http://pcnometh4.cern.ch

IP Internet Protocol

ITS Inner Tracking System; collective name for SSD, SPD and SDD
JETAN JET ANalysis module

LCG LHC Computing Grid

http://lcg.web.cern.ch/LCG

LDAP Lightweight Directory Access Protocol

193/199

The ALICE Offline Bible

LHC Large Hadron Collider
http://lhc.web.cern.ch/lhc

LSF Load Sharing Facility
http://wwwpdp.web.cern.ch/wwwpdp/bis/services/Isf

MC Monte Carlo

MoU Memorandum of Understanding

ocbDB Offline Calibration DataBase
http://aliceinfo.cern.ch/Offline/Activities/ConditionDB.html

oo Object Oriented

(03] Operating System

PAW Physics Analysis Workstation
http://paw.web.cern.ch/paw

PDC Physics Data Challenge

PDF Particle Distribution Function

PEB Project Execution Board

PHOSPHOton Spectrometer
PID Particle IDentity/IDentification

PMD Photon Multiplicity Detector
http://www.veccal.ernet.in/~pmd/ALICE/alice.html

PPR Physics Performace Report
http://alice.web.cern.ch/Alice/ppr

PROOF Parallel ROOT Facility
http://root.cern.ch/root/doc/RootDoc.html

PWG Physics Working Group
http://aliceinfo.cern.ch/Collaboration/PhysicsWorkingGroups

PYTHIA event generator

QA Quality Assurance
QCD Quantum ChromoDynamics
Qs Quantum Statistics

RICH Ring Imaging CHerenkov
http://alice-hmpid.web.cern.ch/alice-hmpid

ROOT A class library for data analysis
http://root.cern.ch

RTAGRequirements and Technical Assessment Group
SDD Silicon Drift Detector
SDTY Standard Data Taking Year

194/199

The ALICE Offline Bible

SE Storage Element

Sl2k SpecInt2000 CPU benchmark
http://cerncourier.com/articles/cnl/1/11/9/1

SLC Scientific Linux CERN
http://linuxsoft.cern.ch

SOA Second Order Acronym

SPD Silicon Pixel Detector
http://www.pd.infn.it/spd

SSD Silicon Strip Detector

TDR Technical Design Report
http://alice.web.cern.ch/Alice/TDR

TOF Time Of Flight Detector
http://alice.web.cern.ch/Alice/Projects/TOF

TPC Time Projection Chamber
http://alice.web.cern.ch/Alice/Projects/TPC

TRD Transition Radiation Detector
http://www-alice.gsi.de/trd/index.html

ul User Interface

uiD Unique IDentification number

URL Universal Resource Locator

VMC Virtual Monte Carlo

VO Virtual Organization

VOMS Virtual Organization Membership Service

WAN Wide Area Network

XML Extensible Markup Language
http://www.w3.org/XML

ZDC Zero Degree Calorimeter

195/199

The ALICE Offline Bible

10References

196/199

N o o AW

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26

CERN/LHCC 2003-049, ALICE Physics Performance Report, Volume 1 (7 November
2003);
ALICE Collaboration: F. Carminati et al. J. Phys. G: Nucl. Part. Phys. 30 (2004) 1517-1763.
CERN-LHCC-2005-018, ALICE Technical Design Report: Computing, ALICE TDR 012
(15 June 2005).
http://root.cern.ch
http://wwwasdoc.web.cern.ch/wwwasdoc/geant_html3/geantall.html
http://www.fluka.org
http://cewrn.ch/geant4
H.-U. Bengtsson and T. Sjostrand, Comput. Phys. Commun. 46 (1987) 43;
T. Sjostrand, Comput. Phys. Commun. 82 (1994) 74;
the code can be found in
http://www.thep.lu.se/~torbjorn/Pythia.html

X. N. Wang and M. Gyulassy, Phys. Rev. D44 (1991) 3501.
M. Gyulassy and X. N. Wang, Comput. Phys. Commun. 83 (1994) 307-331.
The code can be found in
http://www-nsdth.Ibl.gov/~xnwang/hijing

http://alien.cern.ch

P. Saiz et al., Nucl. Instrum. Meth. A 502 2003 437—440

http://www.linux.org

http:/linux.web.cern.ch/linux

http://www.redhat.com

http://fedora.redhat.com

http://gcc.gnu.org
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/index.htm
http://www.intel.com/products/processor/itanium2/index.htm
http://www.amd.com

http://ximbiot.com/cvs/manual

http://cern.ch/clhep

http://cern.ch/castor

J. Ranft, Phys. Rev. D 51 (1995) 64.

ALICE-INT-2003-036

A.~Morsch, http://home.cern.ch/~morsch/AliGenerator/AliGenerator.html and
http://home.cern.ch/~morsch/generator.html

B. Andersson, et al., Phys. Rep. 97 (1983) 31.
B. Andersson, et al., Nucl. Phys. B281 (1987) 289;

27
28
29

30
31
32
33

34
35
36
37
38
39
40

41

42
43
44
45
46
47
48
49
50
51

52
53

B. Nilsson-Almgvist and E. Stenlund, Comput. Phys. Commun. 43 (1987) 387.
A. Capella, et al., Phys. Rep. 236 (1994) 227.
http://arxiv.org/abs/hep-ph/0312045.

HERWIG 6.5, G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P.
Richardson, M.H. Seymour and B.R. Webber, JHEP 0101 (2001) 010 [hep-ph/0011363]; hep-
ph/0210213

L. Ray and R.S. Longacre, STAR Note 419.
S. Radomski and Y. Foka, ALICE Internal Note 2002-31.
http://home.cern.ch/~radomski

L. Ray and G.W. Hoffmann. Phys. Rev. C 54, (1996) 2582, Phys. Rev. C 60, (1999)
014906.

P. K. Skowrénski, ALICE HBT Web Page, http://aliweb.cern.ch/people/skowron

A.M. Poskanzer and S.A. Voloshin, Phys. Rev. C 58, (1998) 1671.

A. Alscher, K. Hencken, D. Trautmann, and G. Baur. Phys. Rev. A 55, (1997) 396.

K. Hencken, Y. Kharlov, and S. Sadovsky, ALICE Internal Note 2002-27.
http://root.cern.ch/root/doc/RootDoc.html

L. Betev, ALICE-PR-2003-279

CERN/LHCC 2005-049, ALICE Physics Performance Report, Volume 2 (5 December

2005);

P. Billoir; NIM A225 (1984) 352,
P. Billoir et al., NIM A241 (1985) 115,
R. Fruhwirth, NIM A262 (1987) 444,

P. Billoir; CPC (1989) 390.

http://alien.cern.ch/download/current/gClient/gShell_Documentation.html
http://glite.web.cern.ch/glite

http://root.cern.ch/root/PROOF.html

CERN/LHCC 99-12.

CERN/LHCC 2000-001.

P.Skowrdnski, PhD Thesis.
http://indico.cern.ch/conferenceDisplay.py?confld=a055286

P. Christakoglou, P. Hristov, ALICE-INT-2006-023

http://www.star.bnl.gov

A. Shoshani, A. Sim, and J. Wu, “Storage resource managers: Middleware components
for Grid storage”, in Proceedings of Nineteenth IEEE Symposium on Mass Storage Systems,
2002 (MSS 2002).

K. Wu et al., “Grid collector: An event catalog with automated file management”.
http://agenda.cern.ch/fullAgenda.php?ida=a055638

54
55
56
57
58

59

60

61

62

63

64

65
66
67

68

http://aliceinfo.cern.ch/offline
http://pcaliweb02.cern.ch/Offline/Analysis/RunEventTagSystem
http://root.cern.ch/root/htmidoc//TGridResult.html
{RefAnalysisFramework}http:/pcaliweb02.cern.ch/Offline/Analysis/CAF

http://agenda.cern.ch/askArchive.php?base=agenda\&categ=a045061\&id=a045061s0t5/transpar
encies
http://project-arda-dev.web.cern.ch/project-arda-dev/alice/apiservice/AA-UserGuide-0.0m.pdf

{RefFileCatalogMetadataNote}M. Oldenburg, ALICE internal note --- to be submitted to

EDMS
http://cern.ch/Oldenburg/MetaData/MetaData.doc

{RefEventTagNote}P. Christakoglou and P. Hristov, "The Event Tag System", ALICE-INT-
2006-023.

{RefFileCatalogMetadataWeb}
http://pcaliweb02.cern.ch/Offline/Analysis/RunEventTagSystem/\\RunTags.htm\#Run/File\%
20metadata

{RefAlienTutorial}http://pcaliweb02.cern.ch/Offline/Analysis/Tutorial
http://indico.cern.ch/conferenceDisplay.py?confld=8546

{RefEventTagWeb}
http://pcaliweb02.cern.ch/Offline/Analysis/RunEventTagSystem/A\EventTagsAnalysis.htm\#Analys
is\%20with\%20tags

{Note:RefGSHELL}http://project-arda-dev.web.cern.ch/project-arda-
dev/alice/apiservice/AA-UserGuide-0.0m.pdf

V. Karim&ki, CMS Note 1997/051 (1997).
http://mathworld.wolfram.com/EulerAngles.html

R. Brun, A. Gheata and M. Gheata, The ROOT geometry package, NIM A502 (2003)
676-680

ROOQOT User's Guide, http://root.cern.ch/root/doc/RootDoc.html

