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Abstract:

The ALICE Data Challenge will require simulated raw data in a format as close
as possible to the actual detector readouts. This document describes strategy
and code that has been implemented to generate raw data both in compressed
and uncompressed mode for two ALICE sub-detectors: the Inner Tracking Sys-
tems (ITS) and the Time Projection Chamber (TPC).
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2 DATA ACQUSITION SYSTEM ARCHITECTURE

1 Introduction

The main purpose of the ALICE experiment is to study the quark-gluon plasma
using beams of heavy ions such as those of lead. The particles in the beams
will collide thousands of times per second and each collision will generate an
event containing thousands of charged particles. Thus, every second, thousands
of particles have to be recorded. The central and minimum bias events are
expected with a relatively low rate of about 10 events per second with a high
data volume of 10 to 40 Megabytes per event. Dielectron events with partial
read out will produce a higher data stream (about 100 events per second) for
a smaller data volume of 1 to 4 Megabytes per event. There will be also events
with Dimuon trigger which may generate about 1500 events per second with a
data size of 200 to 750 Killobytes per event. These are the three types of events,
each contributing to about one third of the final data volume going through
the ALICE data acquisition system. The data flow between the data acquisition
system and the permanent data storage will be limited to a throughput of 1.25
Gigabytes per second, for a grand total of 1 Petabytes produced during the lead
beam period. Another half a Petabyte will be created during the proton beam
run period, amounting to a yearly production (maximum achievable time in a
year) of 1.5 Petabytes of raw data to be recorded and made available for later
processing.

Since 1998, the ALICE experiments and the IT division have jointly executed
several large-scale high throughput distributed computing exercise: the ALICE
Data Challenges. The goals of these regular exercises are to prototype the data
acquisition and computing systems, to test hardware and software components
of these system in realistic condition and to realize an early integration of the
overall ALICE computing infrastructure. An important step in the ALICE Data
Challenge is to produce simulated raw data for different ALICE detectors in a
format as close as possible to the real detector readouts. This doument, there-
fore, describes the strategy and the software implementation to create raw dat

both in compressed and uncompressed mode for two of the ALICE sub-detectors
(ITS and TPCQC).

2 Data Acqusition System Architecture

The ALICE Data Acquisition System (DAQ) architecture will be based on a
data-driven approach. Under the control of a three level trigger systems, the
Front End Electronics (FEEs), located as closed as possible to the detectors,
will readout, format and validate the event rawdata at a local level (ranging
from a complete detector to a sector or a sub-sector of the same). All accepted
events will be shipped via a customed-designed point-to-point optical link called
Detector Data Link (DDL) to a Local Data Concentrator (LDC), a commodity
PC located a few hundred meters away from the interaction point. The LDC
will validate the event, eventually perform local event building (for LDCs with
multiple incoming DDLs), run data compression and other data analysis func-
tions and finally move the raw data to the event builder running on a Global
Data Collector (GDC). The ALICE DAQ environment is shown in Figure 1.
The Permanent Data Storage (PDS) system will perform data recording from
the GDC and will provide access to the event data for all successive analysis
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Figure 1: ALICE DAQ system.

stages.

3 General Strategy

The number of DDL per LDC is not fixed and keeps on changing during each
data challence exercise. Therefore, it is desirable to produce raw data in a basic
unit of a DDL. A LDC file can be generated by combining appropriate numbers
of DDL files. Since the raw data is generated in a unit of a DDL, required number
of LDC files can be generated during each data challenge without regenerating
the raw data.

Tt is proposed to follow an uniform DDL file structure for all the ALICE
sub-detectors as shown in Figure 2.

MH| DATA [MH| DATA |MH| DATA |MH| DATA |[MH| DATA |MH| DATA

—— -
Block1 Block 2 Block n

Figure 2: File structure.

Each block is a DDL file which contains a mini header (MH) followed by the
DDL raw data. A LDC file contains several such blocks whose number is decided
by the number of available LDCs. As an example, the TPC sub-detector has
216 DDLs. If a given data challence uses 12 LDCs, 18 DDL blocks are required
to be packed into a single LDC file. The Table 1 shows the number of LDCs
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assigned to various sub-detectors and the corresponding DDL blocks per LDC
file going to be used during a forthcoming data challenge exercise.

Detector | LDCs number | DDLs number | Blocks per file
ITS Drift 4 12 3
ITS Pixel 2 20 10
ITS Strip 2 16 8
TPC 12 216 18

Table 1: LDCs assigned to TPC and ITS.

The above assignment is rather arbitrary. Since a DDL block is fixed, the
generation of LDC file is rather trivial. Figure 3 shows an example of an ITS
sub-detector with 2 LDCs files having 8 DDL blocks per file and 4 LDC files
having 4 DDL blocks per file.

ITS SSD: 2LDCs and 8 blocks per file

Fite1: v I v = I = N -~ I - O~ I = |
Fite2: s Y v T = NN = T ~~ I~ I~ O |

ITS SSD: 4LDCs and 4 blocks per file

Filel File2
e 0 8 0 3 B 0 O
File3 File4

Figure 3: File rearrangement.

The MH identifies the DDL uniquely and contains the following fields (Total 12
bytes):

e Size of the raw data (4 bytes).

Magic Word (3 bytes) A hexadecimal pattern 123456 is used to distin-
guish between garbage and real data.

Detector ID (1 byte) Used for sub-Detector identification.

DDL ID (2 byte) Used for DDL identification.

Flag Compressed/Uncompressed (1 byte) Indicates if the raw data
block is compressed or uncompressed.

Version (1 byte) Mini Header version.
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In the following, we describe the classes and methods to be used for raw
data production of ITS and TPC sub-detectors.

4 Inner Tracking System

The Inner Tracking System (ITS) consists of 240 Silicon Pixel Detectors (SPD),
260 Silicon Drift Detectors (SDD) and 1698 Silicon Strip Detectors (SPD). These
detector modules are linked to the LDC by 48 DDLs as shown in the appendix.

4.1 SPD Raw Data Format

The Silicon Pixel Detector has 240 sensitive modules !. Four modules mounted
on a planar structure make one full stave. There are 20 staves in the internal
layer, and 40 staves in the external one. The total number of modules is 20 %
4+ 40%4 = 240 which are linked by 20 DDLs each containing 12 modules. Each
module has 5 read out chips each with 256 by 32 cells. As shown in Figure 4,
raw data is formatted considering an half stave as minimal block of size 32 bits.
Information within an half stave is organized in a structure called half stave
frame shown in Figure 5.

Figure 4: Silicon Pixel Detector.

The word length within the half stave frame is 16 bits. However the half stave
frame makes use of 32 bits data words being accepted by the DDL by sending
the 16 bits words in both the lower and the upper 16 bit word of the DDL

INote that for SPD, what is refered as module in the Aliroot frame work is called as a
ladder as per TDR description.
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[TS-SPD data format

p B Chip Header
31 16 15 0
= . 1514 13 12 11 109876543 21 0
Ch :allﬂg : - [0]1] 1 [X[X] Half stave # [hip add]
o o L J

Chip Trailer

1514131211109 876543210
[0T0T0] Chip hit count |

Pixel hit
Chip header 2 15 14131211 109876543210
(IT0[X]  Row  Column]
g 2
@ @ * a
Pixel fill word

Chip header 1
Chip trailer 0 | Chip header 0

Half Stave Frame

1514 131211109 876543210
111

Every 16 bits word has a
Ref.: A. Kluge 15 Nov 2000 unique prefix !

Figure 5: ITS-SDP data structure.

format alternatively. The half stave frame starts with the Chip Header. The
Chip Header is always located in the first 16 bits (bits 0 to 15). The Chip
Header is followed by the Pizel Hit word, that corresponds to one single hit.
The data block of a chip is terminated by the Chip Trailer. In order to facilitate
frame error detection the Chip Trailer is always sent to the higher 16 bits (bits
16 to 31). In case the number of hits in one chip is even, the chip trailer would
be sent to the lower 16 bits of the 32 bits word . Thus a Pizel Fill Word is sent
before the chip trailer. Note that in case a chip has not been hit at all, still
both the Chip Header and the Chip Trailer have been sent. The Chip Header
contains the chip number (form 0 to 9) and the half stave number (0 to 120).
The Chip Trailer contains the total number of hits on the associate chip. The
Pizel hit contains column and row of an hit in a chip. A Chip is represented by
matrix of 256 by 32 cells. The last two bits (14 and 15) are used to identify the
Chip Trailer, Chip Header, Pixel Hit and Pizel Fill Word.

4.2 SDD Raw Data Format

The SDDs (modules) are mounted on linear structure called ladders, each hold-
ing six detectors for the internal layer and eight for the external one. The layers
are composed of 14 and 22 ladders, respectively. So, total detector modules are
14 % 6 + 22 x 8 = 260. Each module will be read by 512 anodes and 256 time
buckets with a 8 bits ADC signal. The Figure 6 shows the raw data format
which is a simple 32 bits word.
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313029028272625242322212019181716151413121110090807060504 030201 0
Module ID Anode Number Time budket ADC Value

Figure 6: ITS-SDD data structure.

Note that with the above scheme, it is not possible to store the absolute
value of the module numbers (range 240:499) using remaining 7 bits (from bit
25 to bit 31). However, since the DDL numbers are stored in the mini header, it
is sufficient to store the relative module number within a given DDL as shown
in the appendix.

4.3 SSD Raw Data Format

The SSD has 34 ladders in the internal layer and 38 ladders in the external one.
Each ladder of the internal layer has 22 detector modules, while there are 25
detector modules in the ladder of the external layer. So, total number of modules
is 34%22+ 3825 = 1698. Each module has 768 strips on either side (N/P). Like
SDD, the raw data format of SSD is also a 32 bit word as shown in Figure 7,
In this case, the first 10 bits are used for the amplitude value, next 10 bits for

31302928272625242322212019181716151413121110090807 060504 030201 0
Module ID NP Strip Number ADC Value

Figure 7: ITS-SSD data structure.

the strip number, 1 bit for the strip type (N or P) and remaining 12 bits can be
used for module identification. Even in this case the module identification is a
relative number with respect to a given DDL.

4.4 Macro for ITS Raw Data Production

ANLITSDDLRawData.C is the macro used to generate ITS raw data files
2. This macro makes use of the methods of the AIITSDDLRawData class
to create the required DDL files. This class has three main methods: Raw-
DataSPD(), RawDataSDD(), and RawDataSSD(). All these methods are very
similar in implementation and is based on the following schema:

1. Initializations
2. Loop over DDLs

e Writes the mini header at the begining. Since at the begining, the
size of the data block is not knwon, this is only dummy mini header
which reserves 12 bytes at the begining.

2In the present implementation, a 10 bit ADC value is assumed. So make sure that the line
if( fResponse-;Do10to8() ) signal = Convert8tol0( signal ) in the method AddDigit()
of the class AliITSsimulationSDD is commented. Besides, this macro requires a digit file
which can be obtained using the macro AliHits2SDigits.C and AliSDigits2Digits.C.
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Loops over modules filling a buffer as per the sub detector format.
Writes the buffer into the output file.
Empties the buffer.

e Writes real mini header.
3. Creates a new DDL file.

In the initialization part, the DDL mapping is read from the look up table: a
matrix in which rows represent DDL number and columns respresent detector
modules. Three different methods: GetDigitsSPD(), GetDigitsSDD(), and Get-
DigitsSSD() for SPD, SDD and SSD are used to fill a 32 bit buffer. Last two
methods are very simple, they just loop over digits of a given module to fill the
buffer. However, the method GetDigitsSPD() is bit involved as data must be
formatted according to the half stave frame structure as described before. The
original digit file (galice.root) is zero suppressed i.e. the chips without any pixel
hits are not read. However, in the present SPD format, a chip header and a
chip trailer are written for all the chips eventhough a given chip has no pixel
hits. The chip numbering is done considering two consecutive modules of an
half stave. For each module, a private class variable fHalfStaveModule is set to
either 0 or to 1 alternatively in order to indicate if the current module is the
first or second part of an half stave: this information is used to calculate the
chip number (0 to 4 or 5 to 9).

The formatted data is stored in a buffer. This buffer is saved every time a
new module is considered. All the methods of this class use directly or indirectly
the method PackWord(), that inserts a word in a buffer of 32 bits, specifying
the start and stop bits.

4.5 Steps to Follow

1. Create galice.root

2. Create Digits AUITSHits2Digits.C. As mentioned before, for SDD, the
ADC signal is assumed to be 8 bits. So, before executing this macro make

sure that the line if(fResponse-;Do10to8())signal=Convert8to10(signal)

in the method AddDigit() of the class AliITSsimulationSDD is com-
mented.

3. Execute Macro AliITSDDLRowDatae.C. The methods RawDataSPD, Raw-
DataSDD and RawDataSSD assume 2, 4 and 2 LDCs (by default) for SPD,
SDD and SSD respectively. However, number of LDC’s can be specified by
the last arguments of the above methods. The corresponding LDC files are
strored as xxxslicen in binary format where xxx stands for SPD, SDD
and SSD respectively and n for the LDC number. The text files xxxs-
lice.txt are created for debugging purposes (for verbose level 2 only).

5 Time Projection Chamber (TPC)

The TPC has 36 inner read out sectors (IROS) (0 : 35) and 36 outer read out
sectors (OROS) (36 : 71). The IROS has 5504 pads over 63 pad rows (0 : 62).
Similarly, the OROS has 9984 pads over 96 pad rows (0 : 95). For read out, each
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IROS is divided into two sub-sectors and each OROS is divided into four sub-
sectors that make 6 Detector Data Links (DDL) per sector (total 216 DDLs).
However, this division is row-wise uneven (see Figure 8 and Fifure 9).

PAD 5503

FEC

ém 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 3% 37 3839 40 41 42|

\
\ T TR
1 U1 HRNT FRARA AL VAT
1B

A FRNY ANARE HRUN FERURAI

=
(@]
PAD SIDE VIEW §/J
R a

Figure 8: IROS pad side view

For example, the sub-sector 0 of IROS contains all the pads of the rows from
0 to 29 whereas the sub-sector 1 contains the pads of the rows from 31 to 62.
The pads of the 30" row are divided between sub-sector 0 and sub-sector 1 as
follows: (i) Sub-sector 0 contains pads 37 to 48 of the 30" row, (ii) Sub-sector
1 contains pads 0 to 36 and pads 49 to 85 of the 30" row. Similarly, the four
sub-sectors of OROS are composed as follows: (i) Sub-sector 0 contains all the
pads of the rows from 0 to 26 and partly the pads of the 27th row (pads 0 to 42
and 47 to 89), (ii) Sub-sector 1 contains pads 43, 44, 45 and 46 of the 27" row
and all the pads of the rows from 28 to 53, (iii) Sub-sector 2 contains pads of
all the rows from 54 to 75 and partly the pads of the row 76 (pads 0 to 32 and
89 to 121) (iv) Sub-sector 3 includes pads from 33 to 88 of the 76!" row and all
the pads of the remaining rows from 77 to 95.

5.1 ALTRO raw data format

As discussed before, a TPC DDL contains several read out pads. The digitized
data from each pad is processed and formatted by an Application Specific In-
tegrated Circuilt (ASIC) called ALTRO (ALICE TPC Read Out). The basic

10
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Figure 9: OROS pad side view

pulse detection scheme is fixed thresholding: samples of value smaller than a
constant decision level are considered as noise and are rejected. Figure 10 shows
the plot of over threshold samples as a function of time bins. Since the signal is
sampled with a frequency ~ 5.66 MHZ which divides the total drift time of 88us
into about 500 time bins. In the ALTRO data format, zero suppressed data is
recorded for each pad over all the time bins. This means, if one calls bunch a
group of adjacent over threshold samples coming from one pad, the signal can
be represented bunch by bunch. Since the data is zero suppressed, it is sufficient
to record three types of 10 bits data, the sample amplitude in a given bunch
(S%), the time bin of the last sample of a given bunch (T'B) and the number of
samples per bunch (BL).

As shown in figure 11, the ALTRO raw data is composed of a sequence of variable
size blocks, each corresponding to a single read-out pad. A block corresponding
to a given pad is composed of a sequence of 10 bits words arranged in groups of
4 (packed into 40-bits word). If some data is missing to complete a 40-bit word,
an “A” hexadecimal pattern is used. A trailer completes the data packet, which
is the last 40-bit word of the data structure. The trailer contains the information
about the pad identification (pad, row and sector numbers) and the block size
i.e. the number of 10-bits words in the block. The last three words can be used

11
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Figure 11: Example of an Altro Format.

to extract the exact channel address 3.

5.2 AlTPCBuffer160 class

As the name suggests, this class manages an internal buffer of size 160 bits.
Since we use an integer array where the maximum integer size is 32 bits, a
160 bits buffer size is the minimum requirement to pack 16 ALTRO words
(10 bits each). Internally, it is managed by an integer array of dimension 5
(ULong-t fBuf fer[5]). This buffer class can be initialized both in read in write
mode (0 read mode and 1 write mode). The FillBuf fer() method is invoked
to fill the buffer (Buffer[0] to Buffer[4]) with the ALTRO words starting from

3The specification of the 40-bits trailer contents are slightly different than what is men-
tioned in [?]. The basic purpose of the last 40-bits is to know the block size (maximum 10-bits)
and to specify the geographical location of the data packet unambiguously. For the purpose of
simulation, we have filled the last three words (30 bits) with the pad, row and sector numbers
which specifies a channel content rather uniquely. It is also possible to use less number of bits
as the mini header of the tape also records the DDL address.

12
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MSB as shown in Figure 12. Finally, the buffer is streamed out into a file when
it is full.

3130202827262524 23222120 191817161514 13121110 9 8 7 6 54 3 21 0

Buffer[0] Word 1 2 | Word 3 [4
Buffer []} Word 4 | Word5 Word 6 | Word 7
Buffer[2]| Word7 [ Wond8 | Word 9 | Word 10
Buffer[3] [Word 101 Word 11 | Word 12 | Word13
Buffer{4] [13 | Word 14 | Word 15 [ Word 16

Figure 12: Structure of the internal buffer.

In write mode, follwoing methods can be used.

e Int_t GetFreeCellNumber ()
To count the number of words required to fill the buffer.
e void WriteTrailer(Int_t WordsNumber,Int_t PadNumber,
Int_t RowNumber,Int_t SecNumber)
To write a trailer into the output file.

e void WriteMiniHeader (ULong_t Size,Int_t SecNumber,
Int_t SubSector,Int_t Detector,Int_t Flag)

To write a mini header; this will be explained later in the section dedicated
to the Data Challenge.
e void SetVerbose(Int_t val)

To set the verbose level: 0 silent, 1 output messages.

e void FillBuffer(Int_t Val)
To insert an integer inside the buffer and streams out the buffer contents
when it is full.

e void Flush()

Called by the AliITPCBuffer160 destructor. If the last buffer is incom-
plete, it is filled with the hexadecimal pattern 2A A before it is streamed
out into the file.

In the read mode, the following methods are used. in the file:

e Int_t GetNext()

This method retrives an ALTRO word from the buffer (in the forward
direction) which is filled with 16 ALTRO words from the file at a time.
Once all the 16 words are read, the buffer is zeroed and filled again. When
the end of the file is reached -1 is returned.

e Int_t GetNextBackWord()

This method retrieve a 10 bits word from the buffer. It works in the similar
way as the previous one, but input file is read backward starting from the

13
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end. The advantage is, it is now possible to interpret the ALTRO word
which is read each time. When the beginning of the file is reached -1 is
returned.

e Int_t ReadTrailerBackward(Int_t &WordsNumber,Int_t &PadNumber,
Int_t &RowNumber,Int_t &SecNumber)

Reads a trailer. This method has to be used when the internal file pointer
points to the begining of a trailer.

5.3 Macros for TPC Raw Data Production

The first step is to get the digits by executing the macro AliTPCHits2Digits.C
which creates a new branch containing the digits in the galice.root file. The digits
although arranged row wise are not DDL compatible.

5.3.1 AliTPCDDL.C

This macro generates a binary file (ALiITPCDDL.dat) as per the DDL map-
ping. The AliTPC.DDL file contains a sequence of records each containing the
following informations:

e Sector number
e Sub sector number
e Row number

Pad number

Amplitude value
e Time bin value

In this arrangement, consecutive records having the same sub-sector numbers
correspond to a given DDL. The change of sub-sector number indicates end of a
DDL. Although in a given DDL, record entries like sector, sub-sector, row and
pad numbers are repetative, this file is an intermediate storage and only used to
generate DDL files with appropriate ALTRO data structure. This macro makes
use of the method WriteRowBinary() of the AliTPCBuffer class.

5.3.2 AliITPCDDLRawData.C

This macro creates both compressed as well as uncompressed LDC files. The
method RawData(LDCsNumber) can be used to produce uncompressed raw-
data. The LDCsNumber specifies the number of LDC need to be produced
(default value is 12). the uncompressed LDC files are named as TPCslicel,
TPCslice2 and so on. For compression, a simple Huffman coding is applied to
the ALTRO raw data. As per ALTRO format, raw data is stored block by block.
Since the block size is written at the end, the raw data file is read blockwise
backward. Each block is compressed using different Huffman tables for differ-
ent data types. The trailer contents are not compressed, copied directly to the
compressed file. Similarly, fill words are also skipped because they can be re-
generated when decompressing the file. So what has been considered for the

14
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compression is the sequence of 10 bits words of each block which falls into three
different categories as (1) Samples, (2) Time Bins and (3) Bunch Length. For
convenience, the time bin is not coded directly. It is substituted by the time
gap between two adjacent bunches. Further, the samples are also divided into
three different categories: (i) Isolated Samples (One sample bunch) (ii) Border
Samples (the first and last samples of each bunch) and (iii) Central Samples.
Therefore, total five Huffman tables are required for data compression. The
following macros are used for compression. The method RawDataeAltro of the
AliITPCDDLRawData class creates a file AltroFormatDDL.dat. This file is
created for two purposes. First, it is used to build the frequency tables for 5
different data categories from which the Huffman tables are generated by call-
ing the CreateTables() method of the AliTPCCompression class. Second, it
can also be used for debugging purposes. For example, this ALTRO file can
be converted into a text file using the method ReadAltroFile() of the AliT-
PCCompression class. To create the files with compressed data the macro
executes the method RawDataCompDecompress() of the class AiTPCDDL-
RawData (files are named TPCslicel.comp, TPCslice2.comp and so on). The
same method is also used to decompress the files, just setting to 1 the second
input parameter (the first parameter indicates the number of files to be cre-
ated). The CreateTables(” AltroFormatDDL.dat”, NumTable) of the AiTPC-
Compression class is used to generate NumTable of Huffman Tables which
are used during compression. This method builds 5 frequency tables from the
raw data file AltroFormatDDL.dat and builds the Huffman tables in binary for-
mat. The table Table0.dat is for the bunch length distribution, Tablel.dat is
for time gap distribution, Table2.dat is for one sample bunch, Table3.dat is for
central sample and Table4.dat is for border sample bunch. For detail see the ap-
pendix. These Huffman binary tables can also be generated by using the method
CreateTablesFrom TxtFiles(NumTable). This method requires 5 normalized fre-
quency tables Tablen.tzt where n varies from 0 to 4 and these tables need to be
supplied.

A brief description of various methods of AITPCDDLRawData class are
given below.

5.3.3 AlLTPCDDLRawData class

This class is used to produce rawdata files to be used during future Data Chal-
lenges. It contains the following public methods:

e void RawDataAltro()

This method creates a binary file AltroFormatDDL.dat in Altro Format
from the temporary DDL file AliTPCDDL.dat. A program reads each data
record and builds the ALTRO block by identifying the amplitude values
in bunches which belong to a given pad. Since the data is zero suppressed,
a group of amplitudes belonging to the same pad (same sector, sub sector,
pad and row number) form a bunch if and only if the time bin values are
continuous. A discontinuity in the time bin either indicates the begining
of a new bunch in the same pad (same ALTRO block) or the beginning of
a new bunch in a new pad (new ALTRO block). Accordingly, the trailer
is invoked when an ALTRO block ends.

15
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e void RawData(Int_t LDCsNumber)

This method works in a similar way as that of previous one. In addition,
it creates a set of files containing DDL rawdata. A DDL contains a mini
header followed by a set of ALTRO data blocks coming from one DDL.
A DDL is a set of ALTRO blocks having same sector and sub-sector ad-
dresses. Although, a mini header appears at the begining of each DDL, in
practice, it is filled after the ALTRO blocks are written into the DDL in
order to know the size of the data blocks. Therefore, the to create a DDL
file, the following steps are followed:

1. Skip a block of 12 bytes (dimension of the mini header).

2. Write all the ALTRO data blocks of a given DDL .

3. Go back to the begining of the DDL and write the mini header.
4. Jump to the end of the DDL.

If the number of LDC are same as the number of DDL, each LDC file
contains a DDL block. However, if LDC number LDCsNumber is less
than the DDL number 216, each LDC file contains 216/LDCsNumber
of DDL blocks.

Int_t RawDataCompDecompress(Int_t LDCsNumber,Int_t Comp=0)

This method is used to create DDL files in the compressed mode (Comp =
0). It can also be used in Comp # 0 mode to decompress the compressed
data. In the compressed mode, each ALTRO data block is copied into
a temporary file and is compressed using the CompressDataOptTables()
method of the compression class as described in this note. Finally, com-
pressed output is copied into the output file. In the last step, the mini
header is also written into the file. The decompression works in the same
way which uses the method DecompressDataOptTables().

void RawDataAltroDecode(Int_t LDCsNumber,Int_t Comp=0)

This method is used for debugging purposes. Depending on the compres-
sion mode, it loops over all the LDC files (uncompressed Comp = 0 or
compressed , Comp = 1) and merges all into one binary file AltroDDL-
Recomposed.dat or AltroDDLRecomposedDec.dat depending on the Comp
flag after removing all the mini headers. In case of uncompressed LDC
files, the output file should be equivalent to the binary file created by
RawDataAltro method. If this doesn’t happen, there could be an error in
the code.

Steps to Follow

. Create galice.root
. Create Digits AliTPCHits2Digits.C
. Create DDL Mappinig, Execute Macro AliTPCDDL.C(”galice.root”). Cre-

ates the files AiTPCDDL.dat.

. Execute Macro AliTPCDDLRawData.C.

16



6 APPENDIX A:-HUFFMAN COMPRESSION

6 Appendix A:Huffman Compression

The compression algorithm for TPC data is based on lossless Huffman coding [?].
The codes generated using this procedure are called Huffman codes. These codes
are prefix codes and are optimum for a given model. The Huffman procedure is
based on two observations regarding optimum prefix codes.

1. In an optimum code, symbols that occur more frequently (have higher
probability of occurrence) will have shorter codewords than symbols that
occur less frequently.

2. In an optimum code, the two symbol that occur less frequently will have
the same length.

Compression is based on two elements, a model and a compression algorithm;
what is important for a good compression, is to have a model that describes
the nature of the data. The better data is described by the model, the better is
the compression factor. As shown in Figure 13, the TPC data are distributed
in bunches. Therefore, the ALTRO data can be divided into 5 categories, three
for Samples, one for bunch length and one for time bins or time gap between
two successive bunches.

| Samples versus Time bin |
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Figure 13: Bunches VS Time bin.

The 5 Huffman tables used are as follows:
1. Bunch Length
2. Time (Gap between two successive bunch)

. Isolated Sample (Sample of single bunch)

=~ W

. Central Samples

5. Border Samples
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6 APPENDIX A:-HUFFMAN COMPRESSION

6.0.1 AliITPCHOptimizedTables.C

This macro can be used to compress an AITRO file (AltroFormat.dat) using the
Huffman tables created with one of the following options:

1. Either calling the method CreateTables. This method builds 5 frequency
tables from the AltroFormat.dat file which are finally used to generate the
Huffman coding tables.

2. Or calling the method Create TablesFrom TxztFiles. This method builds the
Huffman tables using the frequency tables provided by the user. This is
useful to create Huffman tables using an single set of optimized tables.

3. Or using some formula.

The useful classes and methods are described below.

6.0.2 Al'TPCHNode class

The class AliTPCHNode is the base element for building an Huffman tree.
The trees are the crucial elements of Huffman algorithm from which the look
up tables are derived. Each object of this class represent a node of the tree and
contains the following information: Symbol, Frequency of the associate symbol,
a pointer to the left child and a pointer to the right child. An Huffman tree is
a binary tree in which each internal node has always two children, as shown in
Figure 14.

=
—_—

Symbol: 12
CodeWord: 111
CodeLength:3

Figure 14: Huffman tree.
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6.0.3 AlITPCHTable class

This class contains the implementation of the Huffman algorithm, that makes
the following steps for each data class:

1. Get the frequencies of the symbols.
2. Create the tree.
3. Visit the tree and create the look up table.

In our case, each symbol is a 10 bits word, so the range goes from 0 up to 2'°—1,
for a total of 1024 symbols. Every table has as many rows as the number of
symbols. Each symbols has a codeword and code length. Basically an object of
this class represents a table whose dimension is specified by the input parameter
of the constructor. Some of the useful methods of this class are as follows.

e void PrintTable()
This method prints on the screen the content of the table (symbol,codeword
and code length) in a user-friendly style.

e Int_t GetFrequencies(const char* fname)
This method is used to get the frequencies of the symbols directly from
the input file which must be Altro format compliant.

e Int_t SetFrequency(const Int_t Val)
This method is used to increase by one the frequency value of the symbol
specified in input.

e Int_t StoreFrequencies(const char *fname)
This method is used to store the frequencies of the symbols in the specified
binary file.

e Int_t BuildHTable()
This method, first builds the Huffman tree starting from the frequencies
and then creates the corresponding table.

e Double_t GetEntropy()

This method is used to get the entropy value, and it must be used af-
ter GetFrequencies() or SetFequency() and before BuildHTable(). This is
because the entropy is calculated on the ground of the frequencies; fre-
quencies values that are not any more available after the execution of the
BuildHTable() method.

e void SetVerbose(Int_t val)

This method is used to print out on the screen some messages during the
program execution. Verbose level can be set in two different position: 0
silent, 1 output messages.
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6.0.4 AliTPCCompression class

The methods of this class are used either to compress or decompress the Altro-
File using the model based on five different tables.

e Int_t CompressData(AliTPCHTable* table[],Int_t NumTable,
const char* fSource,const char* fDest)

This method is used to compress an Altro file specified in input (fSource)
using specific tables calculated considering the file itself. To make the
decompression possible, the tables are stored at the beginning of the com-
pressed file. If the frequency distribution is known a priori, it is not nec-
essary to store the corresponding Huffman tables in the files.

e Int_t CompressDataOptTables(Int_t NumTable,const char* fSource,
const char* fDest)

This method compress the input file, using a variable number of static ta-
bles that are a priori calculated and optimized for compressing data com-
ing from the TPC detector. The implemented algorithm is parametrized
according to the number of tables, but it works only if the input file is
Altro format compliant.

e Int_t DecompressData(Int_t NumTables,const char* fname,
char* fDest="SourceDecompressed.dat")

This method decompress a file that has been compressed using the Com-
pressData() method.

e Int_t DecompressDataOptTables(Int_t NumTables,const char* fname,
char* fDest="SourceDecompressed.dat")

This method decompress a file that has been compressed using the Com-
pressDataOptTables() method.

e Int_t FillTables(const char* fSource,AliTPCHTable* table[],
const Int_t NumTables)

This method is called also in CreateTables() and it is used to get the
frequencies of the symbols for all the necessary tables.

Besides this method creates a text file, named Statistics which contains
many information, like for instance, the number of word, number of trailer,
and the size in term of bytes of each category. This file is then used to store
compression information like entropy and different compression factors.

e Int_t CreateTables(const char* fSource,const Int_t NumTables)

This method is used to create and stored the tables. It has to be executed
if the optimized tables are not available.

The frequencies are calculated considering the input file and the number
of tables.

This methods also, stores in the Statistics file the value of the entropy for
each category.

e void SetVerbose(Int_t val)

This method is used to set the verbose level. It can assume three different
values: 0 silent, 1 some messages, 2 pedantic output.
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e void ReadAltroFormat(char* fileOut,char* filelIn)

This method read an Altro format file (FileIn parameter) and creates
a text file (fileOut parameter) which contains the same information but
stored in a user-friendly mode. This feature is useful for code debugging
and know, which data, has been processed, but pay attention that the text
file usually is quite big (several MB) and takes a while be be generated.

Talking about the implementation it has to be said, that all the methods work
directly or indirectly with the Altro format and this makes this class absolutely
inappropriate to compress/decompress data of a different format. As it has been
said, that compression is based on Huffman algorithm with five different tables;
to compress a word using this method it is necessary to know, which table has
to be utilized. The answer is provide by the NextTable() private method, that
according to the real state, gives the number of the table that has to be used to
compress the next word.
Now the tables are numbered from 0 to 4 as follow:

e ( for Bunch length

e 1 for Time Bin

e 2 for 1-sample bunch

o 3 for Central samples

e 4 for Border samples

So a bunch length value has to be coded, using the table 0 and the next value
will be a time bin value (Compression is done backward wise) which will be
coded using the table 1. Now according to the bunch length information, we
know, if after the time bin there is a bunch of one sample (table 2), or the be-
ginning of multiple sample bunch (table 4). The mechanism goes on till the end
of the bunch, and then it starts again from the bunch length table (Information
is stored bunch by bunch).

So exploiting the specific Altro structure, it is possible to know which table has
to be used each time.

The NextTable() method is used extensively around the code, and it has to be
rewritten in case the model change.

Let’s see now, how the FillTables() method works. Even this method is model
dependent, and as it has been said, it fills all the tables with the frequencies of
the data contained in the input file. To get the frequencies the input file, has
to be read backward wise, but in this way, we get the bunches in the opposite
order to respect to the time bin evolution. So to calculate the time gap starting
from the fist bunch, it is necessary to save all the values coming from one packet
(data from one pad), in a temporary buffer (named packet) and then scan it
starting from the end, using the auxiliary array TimePos that provides direct
access to the time bin cells of the buffer (Figure 15).

Now the same work for the time gap calculation, is done also in the compression
methods (CompressDataOptTable() and CompressData()) making them model
dependent. So this suggests to create a new class to manage a variable num-
ber of tables and make the compression methods independent from the specific
number of tables and model.

The implementation of the two methods for compressing a file is very similar,
the only thing that is different is that using the CompressData() method all
the tables are stored in the compressed file; so let’s analyze only the Compress-
DataOptTable() method that is the one actually used.
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0 1 2 3 4 5 6 .. i i w: NumWords

TB of the last bunch TB of the first bunch

Figure 15: Time bin calculation.

The first thing that this method does, is to restore in memory the tables from
the files, calling the method RetrieveTables(). This last method has the partic-
ularity that every codeword is not retrieved as it is stored into the file, but it is
retrieved inverting the order of its digits. For instance if the codeword is 12345 it
is retrieved 54321. This is done because, 54321 will be stored in the compressed
file, and not the original codeword, making the decompression routine faster in
the codeword recognition phase.

In fact even the decompression routine works backward wise to reestablish the
original order in the decompressed file. Reading backward cannot be avoided
using memory buffers due to the size of the Altro file.

Once that the tables are restored the compression continues reading the input
file from the end to the beginning and compressing the data working pad by
pad. This means that all the data coming from one pad are stored in an inter-
nal buffer called Packet, then all the time gaps are calculated using the same
technique previously described and finally every word is coded and stored in the
compressed file using the method Store Word().

The trailer, that complete a packet, is stored directly without compression.
The method Store Word() doesn’t store the codewords directly in the output file,
but it stores them in an internal buffer of 32 bits. This is necessary because each
codeword, expressed by an ULong_t variable, has to be stored in the output file
using only the number of bits specified by the associate code length variable. So
all the codewords are packed using an internal buffer who works as follow:
The codeword are inserted directly in the buffer till there is space, then when
the buffer is full it is saved in the output file and emptied. If there isn’t enough
space left in the buffer for a new codeword, the codeword is splitted in two parts
in such a way that the first part fits exactly in the buffer, that becomes full and
it is saved in the output file. Then the buffer is emptied and used to store the
second part of the codeword which goes at the beginning of the buffer.

The CompressDataOptTable() method store also some useful information in the
Statistics file. For instance it stores the compression factor, calculated as ratio
of the original file size and the size of the compressed file.
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6.1 Decompression of Raw Data

AlITPCCompression class provides also two methods which can be used to
decompress a file. They are DecompressData() and DecompressDtaOptTable();
the first one is used to decompress a file created using the method Compress-
Data() while the second one is used to decompress a file created using the
CompressDataOptTable() method.

The difference between them is that while CompressDataOptTable() expects the
tables for decoding the words as a sequence of binary file, DecompressData() ex-
pects all the tables stored at the beginning of the compressed file.

Now, since the compression methods are very similar, even these methods for
uncompressing are similar, so here only the CompressDataOptTable() method
is described.

To decompress a file it is necessary to know the tables that have been used to
codify the words, so the first step of the decompression routine is to get all the
tables. This is done, calling the method CreateTreesFromFile(), as the name
suggests instead of creating look up tables it creates an Huffman tree for each
table (Figure 16. Note that only the leaves contain symbols).

o
i

Symbol: 12
CodeWord:111
CodeLength:3

Figure 16: Huffman tree.

Using trees the decompression is faster than using tables, because the routine
doesn’t know anything about the length the codewords stored in the compressed
file and using tables it has to look for all possible prefixes of every codeword in
all the tables. This is a time consuming operation that is avoided using trees.
After that, trees have been created the decompression routine makes some ini-
tializations and then it works looping over the packets (the number of packets
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is stored at the end of the file).

For each packet the first step is to read the trailer (it is not coded) getting so the
number of words contained inside the packet. At this point the method loops
over the words of the packet decoding and saving them in a new Altro data file
created in the initialization phase.

The decoding of words is implemented in the GetDecodeWord() method who
analyzes bit by bit the information read from the compressed file. To see how
this is done let’s suppose that we have to decode a bunch length codeword and
this is the only information that we have, at this stage we don’t know anything
about the length. So first a pointer to the root of the tree associates with the
bunch length table is set, and then one bit from the input file is read; now ac-
cording to the value of this bit, the pointer is moved to the right or left child;
than an other bit is read and the pointer is updated using the same rule. This
is repeated till a leaf is reached. The decoded symbol can be read directly from
the reached leaf.

Since we are reading the file backward, this explain why codeword are stored in
the inverse way.
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7 Appendix B

DDL’s mapping for ITS.

DDL number | Modules
0 0,1, 4,5, 80, 81, 84, 85, 88, 89, 92, 93
1 2, 3,6, 7, 82, 83, 86, 87, 90, 91, 94, 95
2 8, 9,12,13, 96, 97,100,101,104,105,108,109
3 10,11,14,15, 98, 99,102,103,106,107,110,111
4 16,17,20,21,112,113,116,117,120,121,124,125
5 18,19,22,23,114,115,118,119,122,123,126,127
6 24,25,28,29,128,129,132,133,136,137,140,141
7 26,27,30,31,130,131,134,135,138,139,142,143
8 32,33,36,37,144,145,148,149,152,153,156,157
9 34,35,38,39,146,147,150,151,154,155,158,159
10 40,41,44,45,160,161,164,165,168,169,172,173
11 42.43,46,47,162,163,166,167,170,171,174,175
12 48,47,50,51,176,177,180,181,184,185,188,189
13 50,51,54,55,178,179,182,183,186,187,190,191
14 56,57,60,61,192,193,196,197,200,201,204,205
15 58,59,62,63,194,195,198,199,202,203,206,207
16 64,65,68,69,208,209,212,213,216,217,220,221
17 66,67,70,71,210,211,214,215,218,219,222,223
18 72,73,76,77,224,225,228,229,232,233,236,237
19 74,75,78,79,226,227,230,231,234,235,238,239

Table 2: Silicon pixel detector mapping.
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DDL number

Modules

20

240,241,242,246,247,248,252,253,254,258,259,
260,264,265,266,270,271,272,276,277,278

21

243,244,245 249 250,251,255,256,257,261,262,
263,267,268,269,273,274,275,279,280,281

22

282,283,284,288,289,290,294,295,296,300,301,
302,306,307,308,312,313,314,318,319,320

23

285,286,287,291,292,293,297,298,299,303,304,
305,309,310,311,315,316,317,321,322,323

24

324,325,326,327,332,333,334,335,340,341,342,
343,348,349,350,351,356,357,358,359,364,365

25

328,329,330,331,336,337,338,339,344,345 346,
347,352,353,354,355,360,361,362,363,368,369

26

366,367,372,373,374,375,380,381,382,383,388,
389,390,391,396,397,398,399,404,405,406,407

27

370,371,376,377,378,379,384,385,386,387,392,
393,394,395,400,401,402,403,408,409,410,411

28

412,413,414,415,420,421,422,423,428,429,430,
431,436,436,438,439,444,445 446,447 452,453

29

416,417,418,419,424,425,426,427,432,433 434,
435,440,441,442,443 448 449,450,451 456 457

30

454,455,460,461,462,463,468,469,470,471,476,
AT7 478 479,484,485 486,487,492,493 494,495

31

458,459,464,465,466,467,472,473,474,475,480,
481,482,483,488,489,490,491,496,497,498,499

Table 3: Silicon Drift Detector mapping.
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DDL number

Modules

32

500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510,

522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532,
1204,1205,1206,1207,1208,1209,1210,1211,1212,1213,1214,
1226,1227,1228,1229,1230,1231,1232,1233,1234,1235,1236,
1248,1249,1250,1251,1252,1253,1254,1255,1256,1257,1258,1259,
2098,2099,2100,2101,2102,2103,2104,2105,2106,2107,2108,2109,
2123,2124,2125,2126,2127,2128,2129,2130,2131,2132,2133,2134,
2148,2149,2150,2151,2152,2153,2154,2155,2156,2157,2158,2159,
2173,2174,2175,2176,2177,2178,2179,2180,2181,2182,2183,2184

33

566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576,
588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598,
610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620,
1273,1274,1275,1276,1277,1278,1279,1280,1281,1282,1283,1284,
1298,1299,1300,1301,1302,1303,1304,1305,1306,1307,1308,1309,
1323,1324,1325,1326,1327,1328,1329,1330,1331,1332,1333,1334,
1348,1349,1350,1351,1352,1353,1354,1355,1356,1357,1358,1359,
1373,1374,1375,1376,1377,1378,1379,1380,1381,1382,1383,1384

34

632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642,
654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664,
676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 636,
698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708,
720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730,
1398,1399,1400,1401,1402,1403,1404,1405,1406,1407,1408,1409,
1423,1424,1425,1426,1427,1428,1429,1430,1431,1432,1433,1434,
1448,1449,1450,1451,1452,1453,1454,1455,1456,1457,1458,1459,
1473,1474,1475,1476,1477,1478,1479,1480,1481,1482,1483,1484

35

742, 743, 744, 745, 746, TA7, 748, 749, 750, 751, 752,
764, 765, 766, 767, 768, 769, 770, TT1, 772, 773, TT4,
786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796,
808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818,
1498,1499,1500,1501,1502,1503,1504,1505,1506,1507,1508,1509,
1523,1524,1525,1526,1527,1528,1529,1530,1531,1532,1533,1534,
1548,1549,1550,1551,1552,1553,1554,1555,1556,1557,1558,1559,
1573,1574,1575,1576,1577,1578,1579,1580,1581,1582,1583,1584,
1598,1599,1600,1601,1602,1603,1604,1605,1606,1607,1608,1609

36

830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840,
852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862,
874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884,
896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906,
1623,1624,1625,1626,1627,1628,1629,1630,1631,1632,1633,1634,
1648,1649,1650,1651,1652,1653,1654,1655,1656,1657,1658,1659,
1673,1674,1675,1676,1677,1678,1679,1680,1681,1682,1682,1684,
1698,1699,1700,1701,1702,1703,1704,1705,1706,1707,1708,1709,
1723,1724,1725,1726,1727,1728,1729,1730,1731,1732,1733,1734

37

918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928,
940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950,
962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972,
984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994,
1748,1749,1750,1751,1752,1753,1754,1755,1756,1757,1758,1759,
1773,1774,1775,1776,1777,1778,1779,1780,1781,1782,1783,1784,
1798,1799,1800,1801,3802,1803,1804,1805,1806,1807,1808,1809,
1823,1824,1825,1826,1827,1828,1829,1830,1831,1832,1833,1834,
1848,1849,1850,1851,1852,1853,1854,1855,1856,1857,1858,1859

Table 4: Silicon Strip Detector mapping.
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DDL number

Modules

38

1006,1007,1008,1009,1010,1011,1012,1013,1014,1015,1016,
1028,1029,1030,1031,1032,1033,1034,1035,1036,1037,1038,
1050,1051,1052,1053,1054,1055,1056,1057,1058,1059,1060,
1072,1073,1074,1075,1076,1077,1078,1079,1080,1081,1082,
1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,
1873,1874,1875,1876,1877,1878,1879,1880,1881,1882,1883,1884,
1898,1899,1900,1901,1902,1903,1904,1905,1906,1907,1908,1909,
1923,1924,1925,1926,1927,1928,1929,1930,1931,1932,1933,1934,
1948,1949,1950,1951,1952,1953,1954,1955,1956,1957,1958,1959

39

1116,1117,1118,1119,1120,1121,1122,1123,1124,1125,1126,
1138,1139,1140,1141,1142,1143,1144,1145,1146,1147,1148,
1160,1161,1162,1163,1164,1165,1166,1167,1168,1169,1170,
1182,1183,1184,1185,1186,1187,1188,1189,1190,1191,1192,
1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,
1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,
2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,
2048,2049,2050,2051,2052,2053,2054,2055,2056,2057,2058,2059,
2073,2074,2075,2076,2077,2078,2079,2080,2081,2082,2083,2084

40

511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521,

533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543,
1215,1216,1217,1218,1219,1220,1221,1222,1223,1224,1225,
1237,1238,1239,1240,1241,1242,1243,1244,1245,1246,1247,
1260,1261,1262,1263,1264,1265,1266,1267,1268,1269,1270,1271,1272,
2110,2111,2112,2113,2114,2115,2116,2117,2118,2119,2120,2121,2122,
2135,2136,2137,2138,2139,2140,2141,2142,2143,2144,2145,2146,2147,
2160,2161,2162,2163,2164,2165,2166,2167,2168,2169,2170,2171,2172,
2185,2186,2187,2188,2189,2190,2191,2192,2193,2194,2195,2196,2197

41

555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565,
577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587,
599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609,
621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631,
1285,1286,1287,1288,1289,1290,1291,1292,1293,1294,1295,1296,1297,
1310,1311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321,1322,
1335,1336,1337,1338,1339,1340,1341,1342,1443,1344,1345,1346,1347,
1360,1361,1362,1363,1364,1365,1366,1367,1368,1369,1370,1371,1372,
1385,1386,1387,1388,1389,1390,1391,1392,1393,1394,1395,1396,1397

42

643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653,
665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675,
687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697,
709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719,
731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741,
1410,1411,1412,1413,1414,1415,1416,1417,1418,1419,1420,1421,1422,
1435,1436,1437,1438,1439,1440,1441,1442,1443,1444,1445,1446,1447,
1460,1461,1462,1463,1464,1465,1466,1467,1468,1469,1470,1471,1472,
1485,1486,1487,1488,1489,1490,1491,1492,1493,1494,1495,1496,1497

43

753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763,
775, 776, T77, 778, 779, 780, 781, 782, 783, 784, 785,
797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807,
819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829,
1510,1511,1512,1513,1514,1515,1516,1517,1518,1519,1520,1521,1522,
1535,1536,1537,1538,3539,1540,1541,1542,1543,1544,1545,1546,1547,
1560,1561,1562,1563,1564,1565,1566,1567,1568,1569,1570,1571,1572,
1585,1586,1587,1588,1589,1590,1591,1592,1593,1584,1595,1596,1597,
1610,1611,1612,1613,1614,1615,1616,1617,1618,1619,1620,1621,1622

Table 5: Silicon Strip Detector mapping.




7 APPENDIX B

DDL number

Modules

44

841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851,
863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873,
885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895,
907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917,
1635,1636,1637,1638,1639,1640,1641,1642,1643,1644,1645,1646,1647,
1660,1661,1662,1663,1664,1665,1666,1667,1668,1669,1670,1671,1672,
1685,1686,1687,1688,1689,1690,1691,1692,1603,1694,1695,1696,1697,
1710,1711,1712,1713,1714,1715,1716,1717,1718,1719,1720,1721,1722,
1735,1736,1737,1738,1739,1740,1741,1742,1743,1744,1745,1746,1747

45

929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939,
951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961,

973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983,

995, 996, 997, 998, 999,1000,1001,1002,1003,1004,1005,
1760,1761,1762,1763,1764,1765,1766,1767,1768,1769,1770,1771,1772,
1785,1786,1787,1788,1789,1790,1791,1792,1793,1794,1795,1796,1797,
1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820,1821,1822,
1835,1836,1837,1838,1839,1840,1841,1842,1843,1844,1845,1846,1847,
1860,1861,1862,1863,1864,1865,1866,1867,1868,1869,1870,1871,1872

46

1017,1018,1019,1020,1021,1022,1023,1024,1025,1026,1027,
1039,1040,1041,1042,1043,1044,1045,1046,1047,1048,1049,
1061,1062,1063,1064,1065,1066,1067,1068,1069,1070,1071,
1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,
1105,1106,1107,1108,1109,1110,1111,1112,1113,1114,1115,
1885,1886,1887,1888,1889,1890,1891,1892,1893,1894,1895,1896,1897,
1910,1911,1912,1913,1914,1915,1916,1917,1918,1919,1920,1921,1922,
1935,1936,1937,1938,1939,1940,1941,1942,1943,1944,1945,1946,1947,
1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,1972

47

1127,1128,1129,1130,1131,1132,1133,1134,1135,1136,1137,
1149,1150,1151,1152,1153,1154,1155,1156,1157,1158,1159,
1171,1172,1173,1174,1175,1176,1177,1178,1179,1180,1181,
1193,1194,1195,1196,1197,1198,1199,1200,1201,1202,1203,
1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,
2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,
2035,2036,2037,2038,2039,2040,2041,2042,2043,2044,2045,2046,2047,
2060,2061,2062,2063,2064,2065,2066,2067,2068,2069,2070,2071,2072,
2085,2086,2087,2088,2089,2090,2091,2092,2093,2094,2095,2096,2097

Table 6: Silicon Stip Detector mapping.
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